论文标题
贝叶斯的空间布拉德利 - 托里模型:坦桑尼亚的城市剥夺建模
The Bayesian Spatial Bradley--Terry Model: Urban Deprivation Modeling in Tanzania
论文作者
论文摘要
如果决策者要设计成功的干预措施,则确定任何国家或城市的最贫困地区是关键。但是,在发展中国家,定位需求最大的领域通常是令人惊讶的挑战。由于传统家庭调查的后勤挑战,官方统计数据可能会更慢。存在的估计可能是粗略的,这是由于成本过高和基础设施差的结果;大规模的城市化可以使手动调查的数字迅速过时。比较判断模型,例如Bradley-Terry模型,提供了有希望的解决方案。通过比较不同领域的富裕程度的比较引起的当地知识,这种模型既可以简化物流,又可以规避房屋固定调查固有的偏见。然而,由于现有方法仍然需要大量数据,因此广泛的采用仍然有限。我们通过开发新型的贝叶斯空间布拉德利(Bradley)模型来解决这一问题,该模型大大减少了有效推断所需的数据比较量。该模型集成了城市或国家的网络表示,以及空间平稳性的假设,允许在一个地区剥夺邻近地区的剥夺。我们通过在坦桑尼亚的达累斯萨拉姆收集的新型比较判断数据集证明了该方法的实际有效性。
Identifying the most deprived regions of any country or city is key if policy makers are to design successful interventions. However, locating areas with the greatest need is often surprisingly challenging in developing countries. Due to the logistical challenges of traditional household surveying, official statistics can be slow to be updated; estimates that exist can be coarse, a consequence of prohibitive costs and poor infrastructures; and mass urbanisation can render manually surveyed figures rapidly out-of-date. Comparative judgement models, such as the Bradley--Terry model, offer a promising solution. Leveraging local knowledge, elicited via comparisons of different areas' affluence, such models can both simplify logistics and circumvent biases inherent to house-hold surveys. Yet widespread adoption remains limited, due to the large amount of data existing approaches still require. We address this via development of a novel Bayesian Spatial Bradley--Terry model, which substantially decreases the amount of data comparisons required for effective inference. This model integrates a network representation of the city or country, along with assumptions of spatial smoothness that allow deprivation in one area to be informed by neighbouring areas. We demonstrate the practical effectiveness of this method, through a novel comparative judgement data set collected in Dar es Salaam, Tanzania.