论文标题

挖掘通用功能,用于检测AI操纵的假面

Mining Generalized Features for Detecting AI-Manipulated Fake Faces

论文作者

Yu, Yang, Ni, Rongrong, Zhao, Yao

论文摘要

最近,AI操纵的面部技术已经迅速发展,不断发展,这引发了社会的新安全问题。尽管现有的检测方法考虑了不同类别的假面,但由于跨操作技术之间的分布偏见,使用“看不见”的操纵技术检测假面的性能仍然很差。为了解决这个问题,我们提出了一个新颖的框架,该框架着重于挖掘内在特征,并进一步消除了分布偏见以提高概括能力。首先,我们专注于从摄像机成像过程中挖掘信道差图(CDI)和频谱图像(SI)中的固有线索,以及AI操纵过程中必不可少的步骤。然后,我们介绍了八度卷积(OCTCONV)和一个基于注意力的融合模块,以有效并适应CDI和SI的内在特征。最后,我们设计了一个对齐模块,以消除操纵技术的偏差以获得更广泛的检测框架。我们通过最受欢迎和最先进的操纵技术评估了四类假面数据集的拟议框架,并取得了非常有竞争力的性能。为了进一步验证所提出的框架的概括能力,我们对交叉操作技术进行实验,结果显示了我们方法的优势。

Recently, AI-manipulated face techniques have developed rapidly and constantly, which has raised new security issues in society. Although existing detection methods consider different categories of fake faces, the performance on detecting the fake faces with "unseen" manipulation techniques is still poor due to the distribution bias among cross-manipulation techniques. To solve this problem, we propose a novel framework that focuses on mining intrinsic features and further eliminating the distribution bias to improve the generalization ability. Firstly, we focus on mining the intrinsic clues in the channel difference image (CDI) and spectrum image (SI) from the camera imaging process and the indispensable step in AI manipulation process. Then, we introduce the Octave Convolution (OctConv) and an attention-based fusion module to effectively and adaptively mine intrinsic features from CDI and SI. Finally, we design an alignment module to eliminate the bias of manipulation techniques to obtain a more generalized detection framework. We evaluate the proposed framework on four categories of fake faces datasets with the most popular and state-of-the-art manipulation techniques, and achieve very competitive performances. To further verify the generalization ability of the proposed framework, we conduct experiments on cross-manipulation techniques, and the results show the advantages of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源