论文标题

语法压缩线性代数的不可能结果

Impossibility Results for Grammar-Compressed Linear Algebra

论文作者

Abboud, Amir, Backurs, Arturs, Bringmann, Karl, Künnemann, Marvin

论文摘要

为了处理大量数据,压缩向量和矩阵是自然而受欢迎的。当我们将矢量从尺寸$ n $下降到尺寸$ n \ ll n $时,它肯定会使存储和有效传输变得更加容易,但是它是否也使处理变得易于处理? 在本文中,我们考虑无损压缩方案,并询问我们是否可以在压缩数据上运行计算,就像原始数据很小一样。也就是说,如果操作具有时间复杂性$ t(\ rm {inputsize})$,我们可以在时间$ t(n)$而不是$ t(n)$的压缩表示上执行它吗?我们考虑最基本的线性代数操作:内部产品,矩阵矢量乘法和矩阵乘法。特别是给定两个压缩向量,我们可以在时间$ o(n)$中计算其内部产品吗?或者,也许我们必须先解压缩然后乘以乘以$ω(n)$时间? 答案取决于压缩方案。尽管对于诸如运行长度编码(RLE)之类的简单类型,可以在$ o(n)$时间内完成内部产品,但我们证明,从更丰富的类别的压缩中,这是不可能的:在最坏情况下(在复杂性假设下),基本上需要$ n^2 $甚至更大的运行时间。这是一类语法压缩,其中包含最流行的方法,例如Lempel-Ziv家族。这些方案比简单的RLE更具压缩性,但可惜,我们证明对它们执行计算要困难得多。

To handle vast amounts of data, it is natural and popular to compress vectors and matrices. When we compress a vector from size $N$ down to size $n \ll N$, it certainly makes it easier to store and transmit efficiently, but does it also make it easier to process? In this paper we consider lossless compression schemes, and ask if we can run our computations on the compressed data as efficiently as if the original data was that small. That is, if an operation has time complexity $T(\rm{inputsize})$, can we perform it on the compressed representation in time $T(n)$ rather than $T(N)$? We consider the most basic linear algebra operations: inner product, matrix-vector multiplication, and matrix multiplication. In particular, given two compressed vectors, can we compute their inner product in time $O(n)$? Or perhaps we must decompress first and then multiply, spending $Ω(N)$ time? The answer depends on the compression scheme. While for simple ones such as Run-Length-Encoding (RLE) the inner product can be done in $O(n)$ time, we prove that this is impossible for compressions from a richer class: essentially $n^2$ or even larger runtimes are needed in the worst case (under complexity assumptions). This is the class of grammar-compressions containing most popular methods such as the Lempel-Ziv family. These schemes are more compressing than the simple RLE, but alas, we prove that performing computations on them is much harder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源