论文标题
六函数的形式主义,用于刚性分析动机
The six-functor formalism for rigid analytic motives
论文作者
论文摘要
我们对一般刚性分析空间的刚性分析动机进行了系统的研究,并开发了他们的六种形式主义。一个关键的成分是扩展的适当的基础更改定理,我们能够通过减少代数动机来证明其合理性。实际上,更一般而言,我们开发了一种强大的技术,可以将有关僵化的分析动机的问题减少到有关代数动机的问题上,这在其他情况下也可能有用。我们特别注意建立我们的结果,而没有对刚性分析空间的假设。使用Raynaud的刚性分析几何形状的方法确实可以。
We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud's approach to rigid analytic geometry.