论文标题
数据压缩和协方差矩阵检查:宇宙剪切
Data Compression and Covariance Matrix Inspection: Cosmic Shear
论文作者
论文摘要
协方差矩阵是端到端宇宙学分析中最困难的部分之一。原则上,对于两点函数,每个组件涉及一个四点函数,而所得协方差通常具有数十万个元素。我们研究了各种能够大大降低宇宙剪切统计背景下协方差矩阵的大小的压缩机制。这有助于确定其哪些部分对于参数估计最重要。我们从简单的压缩方法开始,通过隔离和“删除”与最低特征值相关的200个模式,然后是信噪比最低的模式,然后再进行更复杂的方案,例如在层析层面上的压缩水平,最终与大量优化的参数估计和数据压缩(moped)。我们发现,尽管这些方法中的大多数对几个感兴趣的参数(例如$ω_m$)有用,但最简单的方法在固有对准(IA)参数以及$ s_8 $上产生了约束功率的损失。对于考虑的情况 - 来自黑暗能源调查的数据第一年的宇宙剪切 - 只有拖把能够复制16参数空间中的原始约束。最后,我们将公差测试应用于用拖把获得的压缩协方差矩阵的元素,并确认IA参数$ a _ {\ mathrm {ia}} $是协方差矩阵中不准确的最容易受到的。
Covariance matrices are among the most difficult pieces of end-to-end cosmological analyses. In principle, for two-point functions, each component involves a four-point function, and the resulting covariance often has hundreds of thousands of elements. We investigate various compression mechanisms capable of vastly reducing the size of the covariance matrix in the context of cosmic shear statistics. This helps identify which of its parts are most crucial to parameter estimation. We start with simple compression methods, by isolating and "removing" 200 modes associated with the lowest eigenvalues, then those with the lowest signal-to-noise ratio, before moving on to more sophisticated schemes like compression at the tomographic level and, finally, with the Massively Optimized Parameter Estimation and Data compression (MOPED). We find that, while most of these approaches prove useful for a few parameters of interest, like $Ω_m$, the simplest yield a loss of constraining power on the intrinsic alignment (IA) parameters as well as $S_8$. For the case considered -- cosmic shear from the first year of data from the Dark Energy Survey -- only MOPED was able to replicate the original constraints in the 16-parameter space. Finally, we apply a tolerance test to the elements of the compressed covariance matrix obtained with MOPED and confirm that the IA parameter $A_{\mathrm{IA}}$ is the most susceptible to inaccuracies in the covariance matrix.