论文标题

从第一届Ariel机器学习挑战中学到的经验教训:校正恒星斑点的过渡系外行星光曲线

Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots

论文作者

Nikolaou, Nikolaos, Waldmann, Ingo P., Tsiaras, Angelos, Morvan, Mario, Edwards, Billy, Yip, Kai Hou, Tinetti, Giovanna, Sarkar, Subhajit, Dawson, James M., Borisov, Vadim, Kasneci, Gjergji, Petkovic, Matej, Stepisnik, Tomaz, Al-Ubaidi, Tarek, Bailey, Rachel Louise, Granitzer, Michael, Julka, Sahib, Kern, Roman, Ofner, Patrick, Wagner, Stefan, Heppe, Lukas, Bunse, Mirko, Morik, Katharina

论文摘要

最近十年见证了系外行星的发现和特征的迅速发展。但是,仍然存在一些大挑战,其中许多挑战可以使用机器学习方法来解决。例如,最多产的方法是检测系外行星并推断其几种特征(Transit光度法)对恒星斑点的存在非常敏感。文献中的当前实践是在视觉上确定斑点的影响并手动纠正它们或丢弃受影响的数据。本文探讨了在存在恒星斑点的情况下完全自动化从过境光曲线的过时深度的有效和精确推导的第一步。我们提出的方法和结果是在为欧洲航天局即将举行的Ariel任务组织的第一届机器学习挑战的背景下获得的。我们首先提出了这个问题,模拟的类似Ariel的数据并概述了挑战,同时确定了未来组织类似挑战的最佳实践。最后,我们介绍了前5名获胜团队获得的解决方案,提供他们的代码并讨论他们的含义。成功的解决方案要么构建具有最小的预处理 - 深度神经网络的高度非线性(W.R.T.原始数据)模型,要么从光曲线中获得有意义的统计数据,从而构建了线性模型,从而产生了相当良好的预测性能。

The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency's upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing -deep neural networks and ensemble methods- or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源