论文标题

通过海马体系结构对特定实例和广义类的无监督一声学习

Unsupervised One-shot Learning of Both Specific Instances and Generalised Classes with a Hippocampal Architecture

论文作者

Kowadlo, Gideon, Ahmed, Abdelrahman, Rawlinson, David

论文摘要

建立的一次性机器学习的实验程序不会测试学习或记住班级特定实例的能力,这是动物智能的关键特征。对于许多现实世界中的任务,要区分特定实例是必要的,例如记住哪个杯子属于您。类中的概括与分离类实例的能力相冲突,因此很难在单个体系结构中实现这两个功能。我们建议扩展到标准的Omniglot分类将军框架,该框架还测试了一次暴露后区分特定实例并引入噪声和遮挡损坏的能力。学习被定义为分类和召回培训样本的能力。互补学习系统(CLS)是一种流行的哺乳动物大脑区域模型,被认为在从一次接触刺激中学习中起着至关重要的作用。我们创建了CLS的人工神经网络实现,并将其应用于扩展的Omniglot基准。我们的无监督模型证明了与Omniglot分类任务(需要概括)的现有监督ANN相当的性能,而无需特定领域的归纳偏见。在扩展的Omniglot实例识别任务上,同一模型还显示出比基线最接近的邻居方法的性能明显好得多,鉴于部分遮挡和噪声。

Established experimental procedures for one-shot machine learning do not test the ability to learn or remember specific instances of classes, a key feature of animal intelligence. Distinguishing specific instances is necessary for many real-world tasks, such as remembering which cup belongs to you. Generalisation within classes conflicts with the ability to separate instances of classes, making it difficult to achieve both capabilities within a single architecture. We propose an extension to the standard Omniglot classification-generalisation framework that additionally tests the ability to distinguish specific instances after one exposure and introduces noise and occlusion corruption. Learning is defined as an ability to classify as well as recall training samples. Complementary Learning Systems (CLS) is a popular model of mammalian brain regions believed to play a crucial role in learning from a single exposure to a stimulus. We created an artificial neural network implementation of CLS and applied it to the extended Omniglot benchmark. Our unsupervised model demonstrates comparable performance to existing supervised ANNs on the Omniglot classification task (requiring generalisation), without the need for domain-specific inductive biases. On the extended Omniglot instance-recognition task, the same model also demonstrates significantly better performance than a baseline nearest-neighbour approach, given partial occlusion and noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源