论文标题
使用神经网络的光谱分裂和宽带光的浓度
Spectral splitting and concentration of broadband light using neural networks
论文作者
论文摘要
控制光的衍射和干扰的紧凑光子元件在超紧凑型尺寸下提供了出色的性能。与常规的光学结构不同,这些衍射光学元件可以同时控制光的光谱和空间曲线。但是,这种衍射光学元素的反设计与当前算法耗时,并且设计通常缺乏实验验证。在这里,我们开发了一个神经网络模型来实验设计和验证脊柱。一种特殊类型的衍射光学元件,可以实现光谱分裂和同时浓度的宽带光。我们使用神经网络来利用通过相板通过波前重建产生的非线性操作。我们的结果表明,与通过局部搜索优化算法进行优化的相板相比,神经网络模型具有定量评估的相位板的光谱分裂性能增强。通过比较输出平面上的强度分布,在实验上验证了通过神经网络优化的相板的功能。一旦训练了神经网络,我们设法在2秒内使用96.6 $ \ pm $ 2.3%的精度设计固定剂,这比迭代搜索算法快的阶数级。我们公开共享我们开发的快速有效框架,以便有助于衍射光学元素的设计和实施,这可以导致显微镜,光谱和太阳能应用的变革性效应。
Compact photonic elements that control both the diffraction and interference of light offer superior performance at ultra-compact dimensions. Unlike conventional optical structures, these diffractive optical elements can provide simultaneous control of spectral and spatial profile of light. However, the inverse-design of such a diffractive optical element is time-consuming with current algorithms, and the designs generally lack experimental validation. Here, we develop a neural network model to experimentally design and validate SpliCons; a special type of diffractive optical element that can achieve spectral splitting and simultaneous concentration of broadband light. We use neural networks to exploit nonlinear operations that result from wavefront reconstruction through a phase plate. Our results show that the neural network model yields enhanced spectral splitting performance for phase plates with quantitative assessment compared to phase plates that are optimized via local search optimization algorithm. The capabilities of the phase plates optimized via neural network are experimentally validated by comparing the intensity distribution at the output plane. Once the neural networks are trained, we manage to design SpliCons with 96.6 $\pm$ 2.3% accuracy within 2 seconds, which is orders of magnitude faster than iterative search algorithms. We openly share the fast and efficient framework that we develop in order to contribute to the design and implementation of diffractive optical elements that can lead to transformative effects in microscopy, spectroscopy, and solar energy applications.