论文标题
$ U(1,1)$的kudla-ropoport猜想在损坏的质量上
The Kudla-Rapoport conjecture at a ramified prime for $U(1, 1)$
论文作者
论文摘要
在本文中,我们证明了$ u(1,1)$ - shimura品种的本地算术Siegel-weil公式,又称shimura品种,又称kudla-ropoport的猜想,在一个后果案件中。该公式需要从原始的Kudla-Ropoport猜想中修改。在此过程中,我们还对单一类型$ $(1,1)$(Krämer模型)的Rapoport-Zink空间的特殊除数进行了明确的分解。一个关键的成分是将Rapoport-Zink空间与Drinfeld上空平面相关联。
In this paper, we proved a local arithmetic Siegel-Weil formula for a $U(1, 1)$-Shimura variety at a ramified prime, a.k.a. a Kudla-Rapoport conjecture at a ramified case. The formula needs to be modified from the original Kudla-Rapoport conjecture. In the process, we also gives an explicit decomposition of the special divisors of the Rapoport-Zink space of unitary type $(1, 1)$ (Krämer model). A key ingredient is to relate the Rapoport-Zink space to the Drinfeld upper plane.