论文标题

材料设计原理朝着从异常低孔迁移率的硅迁移率学习

Materials design principles towards high hole mobility learning from an abnormally low hole mobility of silicon

论文作者

Yang, Q. L., Deng, H. X., Wei, S. H., Li, S. S., Luo, J. W.

论文摘要

SI主导了半导体工业的材料,但具有异常低的室温孔迁移率(505 cm^2/vs),比Diamond and GE(2000 cm^2/vs)低四倍,这是周期桌中IV组的两个相邻邻居。在过去的半个世纪中,已经做出了广泛的努力,以克服SI流动性低下引起的SI技术的挑战。但是,仍然缺乏对基本机制的基本理解。在这里,我们从理论上重现了常规IV组和III-V半导体的实验数据,而无需通过解决经典模型的缺点来涉及可调节参数。我们发现,SI中异常低的孔迁移率源自其弱的自旋轨道耦合而产生的强带散射的组合以及光学声子在孔形散射中的密集参与。相反,GE中强的自旋轨道耦合导致带可忽略的带散射。钻石中的强键和光原子质量会引起高光学声子的频率,从而阻止了它们参与散射。基于这些理解源于基本原子特性,我们提出了针对高孔迁移率的半导体材料的设计原理。

Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the Periodic Table. In the past half-century, extensive efforts have been made to overcome the challenges of Si technology caused by low mobility in Si. However, the fundamental understanding of the underlying mechanisms remains lacking. Here, we theoretically reproduce the experimental data for conventional group IV and III-V semiconductors without involving adjustable parameters by curing the shortcoming of classical models. We uncover that the abnormally low hole mobility in Si originating from a combination of the strong interband scattering resulting from its weak spin-orbit coupling and the intensive participation of optical phonons in hole-phonon scattering. In contrast, the strong spin-orbit coupling in Ge leads to a negligible interband scattering; the strong bond and light atom mass in diamond give rise to high optical phonons frequency, preventing their participation in scattering. Based on these understandings rooted into the fundamental atomic properties, we present design principles for semiconducting materials towards high hole mobility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源