论文标题
Kermack-Mckendrick流行模型中的相变:其他非线性和引入药物免疫的影响
Phase transition in Kermack-McKendrick Model of Epidemic: Effects of Additional Nonlinearity and Introduction of Medicated Immunity
论文作者
论文摘要
在流行病学领域,流行病的传播的数学建模一直是一个有趣的挑战。 Kermack和McKendrick在1927年提出的SIR模型是流行病学的典型模型。但是,它有其局限性。在本文中,我们展示了两种独立的概括该模型的方式,即如果未发现或准备使用疫苗,则第一个是一种模型,如果发现疫苗并准备使用疫苗,则是一种独立的方式。在第一部分中,我们指出了一个主要的过度简化,即,假设变量的时间衍生物具有各个变量的线性或二次幂的变化,并引入了两个新参数,以在模型中被感染人数的进一步的非线性结合。结果,我们展示了在新引入的参数中,这种额外的非线性如何在感染的高峰时间(即感染人群达到最大值的时间)会带来重大变化。我们表明,在特殊情况下,即使我们也可以从流行病到特定传染病的非流行阶段过渡。我们进一步研究了这样一种特殊情况,并将其视为相变的问题。然后,我们研究了该相变的所有必要参数,例如顺序参数和关键指数。我们观察到$ o_p \ sim(q_c-q)^β$。 {\据我们所知,在大流行的背景下,尚不知道相变及其在缩放行为方面的量化。在第二部分中,我们将人造牛群的免疫力考虑到模型中,并显示我们如何减少感染的高峰时间,随后最大感染者数量减少。
Mathematical modelling of the spread of epidemics has been an interesting challenge in the field of epidemiology. The SIR Model proposed by Kermack and McKendrick in 1927 is a prototypical model of epidemiology. However, it has its limitations. In this paper, we show two independent ways of generalizing this model, the first one if the vaccine isn't discovered or ready to use and the next one, if the vaccine is discovered and ready to use. In the first part, we have pointed out a major over-simplification, i.e., assumption of variation of the time derivatives of the variables with the linear or quadratic powers of the individual variables and introduce two new parameters to incorporate further nonlinearity in the number of infected people in the model. As a result of this, we show how this additional nonlinearity, in the newly introduced parameters, can bring a significant shift in the peak time of infection, i.e., the time at which the infected population reaches maximum. We show that in special cases, even we can get a transition from epidemic to a non-epidemic stage of a particular infectious disease. We further study one such special case and treat it as a problem of phase transition. Then, we investigate all the necessary parameters of this phase transition, like the order parameter and critical exponent. We observe that $O_p \sim (q_c-q)^β$. {\it As far as we know the phase transition and its quantification in terms of the scaling behaviour is not yet know in the context of pandemic}. In the second part, we incorporate in the model, a consideration of artificial herd immunity and show how we can decrease the peak time of infection with a subsequent decrease in the maximum number of infected people.