论文标题
COVID-19案件和死亡的流动性预测:适用于英国的双变量模型
Mid-Epidemic Forecasts of COVID-19 Cases and Deaths: A Bivariate Model applied to the UK
论文作者
论文摘要
COVID-19的流行病的演变伴随着基础流行病学参数的积累证据。因此,使用此类信息提供了对流行轨迹的中期预测的模型的潜力。锁定干预措施的有效性也可以通过对以后的流行阶段进行建模,可能是使用多相流行模型来评估。通常应用的方法用于分析流行轨迹包括现象学生长模型(例如理查兹),以及易感感染的被培养(SIR)隔室模型的变体。在这里,我们专注于采用双变量雷诺模型(案件和死亡)的实用预测方法,该方法应用于临时英国互联数据。我们在开发和估计模型中展示了信息知识的实用性,并比较了错误密度(泊松 - 帕玛,泊松词,泊松,泊松 - 索森·森林),以在新病例和死亡中分散数据。我们使用交叉验证评估中期预测。我们还考虑使用两期模型来评估锁骨后流行病的长期流行概况,以评估流行病。适合中等流行数据显示出更适合训练数据和泊松模型的更好的交叉验证性能。锁定放松后的长期流行数据的估计,其特征是延长的缓慢下滑,然后在情况下上升,对有效遏制产生了怀疑。现象学模型的许多应用都是为了完成流行病。但是,仅根据观察到的数据的拟合,对此类模型的评估可能只会给出部分图片,而针对实际趋势的交叉验证也很有用。同样,它可能比模型发生率而不是累积数据更可取,尽管这引发了有关建模通常不稳定的误差密度的问题。因此,可以评估替代误差假设的实用性。
The evolution of the COVID-19 epidemic has been accompanied by accumulating evidence on the underlying epidemiological parameters. Hence there is potential for models providing mid-term forecasts of the epidemic trajectory using such information. The effectiveness of lockdown interventions can also be assessed by modelling later epidemic stages, possibly using a multiphase epidemic model. Commonly applied methods to analyze epidemic trajectories include phenomenological growth models (e.g. the Richards), and variants of the susceptible-infected-recovered (SIR) compartment model. Here we focus on a practical forecasting approach, applied to interim UK COVID data, using a bivariate Reynolds model (cases and deaths). We show the utility of informative priors in developing and estimating the model, and compare error densities (Poisson-gamma, Poisson-lognormal, Poisson-logStudent) for overdispersed data on new cases and deaths. We use cross-validation to assess medium term forecasts. We also consider the longer term post-lockdown epidemic profile to assess epidemic containment, using a two phase model. Fit to mid-epidemic data shows better fit to training data and better cross validation performance for a Poisson-logStudent model. Estimation of longer term epidemic data after lockdown relaxation, characterised by protracted slow downturn and then upturn in cases, casts doubt on effective containment. Many applications of phenomenological models have been to complete epidemics. However, evaluation of such models based simply on their fit to observed data may give only a partial picture, and cross-validation against actual trends is also useful. Similarly, it may be preferable to model incidence rather than cumulative data, though this raises questions about suitable error densities for modelling often erratic fluctuations. Hence there may be utility in evaluating alternative error assumptions.