论文标题
前列腺癌分段的跨模式自我发项蒸馏
Cross-Modal Self-Attention Distillation for Prostate Cancer Segmentation
论文作者
论文摘要
从多模式磁共振图像对前列腺癌的自动分割对于患者的初始分期和预后至关重要。但是,如何更有效地使用多模式图像功能仍然是医疗图像分割领域的一个具有挑战性的问题。在本文中,我们通过完全利用不同方式的中间层的编码信息来开发一个跨模式的自我发项式蒸馏网络,而不同模态的提取的注意图使该模型能够通过更多详细信息传输重要的空间信息。此外,新型的空间相关特征融合模块进一步用于学习更多的互补相关性和不同模态图像的非线性信息。我们在358 MRI上用活检证实,在358 MRI上评估了我们的模型。广泛的实验结果表明,我们提出的网络可实现最先进的性能。
Automatic segmentation of the prostate cancer from the multi-modal magnetic resonance images is of critical importance for the initial staging and prognosis of patients. However, how to use the multi-modal image features more efficiently is still a challenging problem in the field of medical image segmentation. In this paper, we develop a cross-modal self-attention distillation network by fully exploiting the encoded information of the intermediate layers from different modalities, and the extracted attention maps of different modalities enable the model to transfer the significant spatial information with more details. Moreover, a novel spatial correlated feature fusion module is further employed for learning more complementary correlation and non-linear information of different modality images. We evaluate our model in five-fold cross-validation on 358 MRI with biopsy confirmed. Extensive experiment results demonstrate that our proposed network achieves state-of-the-art performance.