论文标题
抑制全译本量子处理器中静态ZZ相互作用
Suppression of static ZZ interaction in an all-transmon quantum processor
论文作者
论文摘要
超导式传输量子标式目前是用于量子计算的领先量子模态,但是带有传输的量子处理器中的栅极性能通常不足以支持用于实用应用程序的运行复杂算法。因此,非常需要进一步提高门的性能。由于Transmon的非谐声性弱,耦合的跨音节之间的静态ZZ相互作用通常存在,破坏了栅极性能,并且从长远来看,它可能会成为性能限制。在这里,我们从理论上探索了一个以前未开发的参数区域,以解决此问题。我们表明,可以在全频道系统中找到一个可行的参数区域,其中ZZ相互作用被严重抑制,而将XY相互作用与足够的强度相互作用可以实现两倍的门。因此,可以实现诸如交叉谐振门或ISWAP门之类的两分门,而无需对静态ZZ相互作用产生不利影响。为了说明这一点,我们证明了一个具有快速栅极速度和较低条件相误差的ISWAP门。扩展到大规模的Transmon量子处理器,尤其是具有固定耦合的情况,解决误差,空转误差和串扰的情况也可以得到强烈抑制。
The superconducting transmon qubit is currently a leading qubit modality for quantum computing, but gate performance in quantum processor with transmons is often insufficient to support running complex algorithms for practical applications. It is thus highly desirable to further improve gate performance. Due to the weak anharmonicity of transmon, a static ZZ interaction between coupled transmons commonly exists, undermining the gate performance, and in long term, it can become performance limiting. Here we theoretically explore a previously unexplored parameter region in an all-transmon system to address this issue. We show that an feasible parameter region, where the ZZ interaction is heavily suppressed while leaving XY interaction with an adequate strength to implement two-qubit gates, can be found for all-transmon systems. Thus, two-qubit gates, such as cross-resonance gate or iSWAP gate, can be realized without the detrimental effect from static ZZ interaction. To illustrate this, we demonstrate that an iSWAP gate with fast gate speed and dramatically lower conditional phase error can be achieved. Scaling up to large-scale transmon quantum processor, especially the cases with fixed coupling, addressing error, idling error, and crosstalk that arises from static ZZ interaction could also be strongly suppressed.