论文标题
任何自旋的渐近对称性
On asymptotic symmetries in higher dimensions for any spin
论文作者
论文摘要
我们研究了高于或等于四的平坦背景的渐近对称性。对于旋转两个,我们提供了Campiglia和Laddha在四维Minkowski空间中发现的扩展BMS变换的对应物。然后,我们在任何维度上识别高自旋的超倾斜和广义级别。这些对称性是一对一的对应关系,与天体球上的旋转$ s $部分无质量表示,超级翻译尤其与最大深度的表示相对应。我们讨论了相应的渐近电荷的定义,并利用超级翻译的定义,以证明与温伯格的软定理的链接均匀。
We investigate asymptotic symmetries in flat backgrounds of dimension higher than or equal to four. For spin two we provide the counterpart of the extended BMS transformations found by Campiglia and Laddha in four-dimensional Minkowski space. We then identify higher-spin supertranslations and generalised superrotations in any dimension. These symmetries are in one-to-one correspondence with spin-$s$ partially-massless representations on the celestial sphere, with supertranslations corresponding in particular to the representations with maximal depth. We discuss the definition of the corresponding asymptotic charges and we exploit the supertranslational ones in order to prove the link with Weinberg's soft theorem in even dimensions.