论文标题

MPRNET:轻量级图像超级分辨率的多路剩余网络

MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution

论文作者

Mehri, Armin, Ardakani, Parichehr B., Sappa, Angel D.

论文摘要

轻型超级分辨率网络对于现实世界应用非常重要。近年来,通过牺牲记忆和计算成本,已经引入了几种具有出色成就的SR深度学习方法。为了克服这个问题,提出了一个新型的轻质超级分辨率网络,该网络改善了轻量级SR中的SOTA性能,并且执行与计算昂贵的网络大致相似。多路剩余网络设计具有一组残留的串联块,上面堆叠着自适应残差块:($ i $),以适应性地提取信息性功能并学习更多表现力的空间上下文信息; ($ ii $)在上采样阶段之前更好地利用多层表示; ($ iii $)允许网络中有效的信息和梯度流。所提出的体系结构还包含一种新的注意机制,即两倍的注意模块,以最大程度地提高模型的表示能力。广泛的实验表明,我们的模型与其他SOTA SR方法的优越性。

Lightweight super resolution networks have extremely importance for real-world applications. In recent years several SR deep learning approaches with outstanding achievement have been introduced by sacrificing memory and computational cost. To overcome this problem, a novel lightweight super resolution network is proposed, which improves the SOTA performance in lightweight SR and performs roughly similar to computationally expensive networks. Multi-Path Residual Network designs with a set of Residual concatenation Blocks stacked with Adaptive Residual Blocks: ($i$) to adaptively extract informative features and learn more expressive spatial context information; ($ii$) to better leverage multi-level representations before up-sampling stage; and ($iii$) to allow an efficient information and gradient flow within the network. The proposed architecture also contains a new attention mechanism, Two-Fold Attention Module, to maximize the representation ability of the model. Extensive experiments show the superiority of our model against other SOTA SR approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源