论文标题

多层网络中的恢复耦合

Recovery Coupling in Multilayer Networks

论文作者

Danziger, Michael M., Barabási, Albert-László

论文摘要

基础架构系统的复杂性增加导致多个网络之间的关键相互依赖性---通信系统需要电力,而电网的正常功能依赖于通信系统。这些相互依存关系启发了有关耦合多层网络的广泛文献,假设一个网络中的组件故障会导致另一个网络中的失败,这是一种硬相互依赖性,导致多个系统中的一系列故障。尽管这种硬耦合的经验证据是有限的,但网络的维修和恢复需要其他网络提供的资源,从而导致恢复过程引起的良好的相互依赖性。如果支持网络不起作用,则恢复将减慢。在这里,我们收集了有关数百万功率电网故障的恢复时间的数据,在大扰动后找到了恢复中普遍非线性行为的证据。我们开发一个理论框架来解决恢复耦合,预测定量特征与多层级联失败不同。然后,我们依靠受控的自然实验将恢复耦合的作用与其他效果(例如资源限制)分开,提供了直接证据,证明恢复耦合如何影响系统的功能。由此产生的见解具有超出基础设施系统的含义,从而提供了对生物系统脆弱性和衰老的见解。

The increased complexity of infrastructure systems has resulted in critical interdependencies between multiple networks---communication systems require electricity, while the normal functioning of the power grid relies on communication systems. These interdependencies have inspired an extensive literature on coupled multilayer networks, assuming that a component failure in one network causes failures in the other network, a hard interdependence that results in a cascade of failures across multiple systems. While empirical evidence of such hard coupling is limited, the repair and recovery of a network requires resources typically supplied by other networks, resulting in well documented interdependencies induced by the recovery process. If the support networks are not functional, recovery will be slowed. Here we collected data on the recovery time of millions of power grid failures, finding evidence of universal nonlinear behavior in recovery following large perturbations. We develop a theoretical framework to address recovery coupling, predicting quantitative signatures different from the multilayer cascading failures. We then rely on controlled natural experiments to separate the role of recovery coupling from other effects like resource limitations, offering direct evidence of how recovery coupling affects a system's functionality. The resulting insights have implications beyond infrastructure systems, offering insights on the fragility and senescence of biological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源