论文标题

通过深层生成融合预测Landsat的反射

Predicting Landsat Reflectance with Deep Generative Fusion

论文作者

Bouabid, Shahine, Chernetskiy, Maxim, Rischard, Maxime, Gamper, Jevgenij

论文摘要

公共卫星任务通常与空间分辨率和时间分辨率之间的权衡约束,因为没有单个传感器提供频繁覆盖的细粒度采购。这阻碍了他们有助于植被监测或人道主义行为的潜力,这需要检测快速而详细的地面变化。在这项工作中,我们通过将具有不同空间和时间特征的产品融合来探测深生成模型产生高分辨率光学图像的潜力。我们介绍了共同注册的中度分辨率成像光谱仪(MODIS)和Landsat表面反射时间序列的数据集,并演示了我们的生成模型将粗糙的每日反射信息融合到低节奏的较低效果的能力。我们针对最先进的反射式融合算法进行基准测试我们提出的模型。

Public satellite missions are commonly bound to a trade-off between spatial and temporal resolution as no single sensor provides fine-grained acquisitions with frequent coverage. This hinders their potential to assist vegetation monitoring or humanitarian actions, which require detecting rapid and detailed terrestrial surface changes. In this work, we probe the potential of deep generative models to produce high-resolution optical imagery by fusing products with different spatial and temporal characteristics. We introduce a dataset of co-registered Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat surface reflectance time series and demonstrate the ability of our generative model to blend coarse daily reflectance information into low-paced finer acquisitions. We benchmark our proposed model against state-of-the-art reflectance fusion algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源