论文标题
估计与共同信息估计器的总相关性
Estimating Total Correlation with Mutual Information Estimators
论文作者
论文摘要
总相关性(TC)是信息理论中的一个基本概念,可测量多个随机变量之间的统计依赖性。最近,TC在许多学习任务中表现出明显的有效性,在许多学习任务中,多个潜在嵌入之间的相关性需要共同最小化或最大化。但是,计算精确的TC值是具有挑战性的,尤其是当嵌入变量的闭合形式分布未知时。在本文中,我们引入了一个统一的框架,以估算基于样本的互信息(MI)估计器的总相关值。更具体地说,我们发现了TC和MI之间的关系,并提出了两种类型的计算路径(类似树和线状)将TC分解为MI项。在每个MI项被界定时,可以成功估计TC值。此外,我们提供有关拟议TC估计器的统计一致性的理论分析。实验均在合成和现实世界情景上介绍,在该场景中,我们的估计器在所有TC估计,最小化和最大化任务中都表现出有效性。该代码可在https://github.com/linear95/tc-estimation上获得。
Total correlation (TC) is a fundamental concept in information theory that measures statistical dependency among multiple random variables. Recently, TC has shown noticeable effectiveness as a regularizer in many learning tasks, where the correlation among multiple latent embeddings requires to be jointly minimized or maximized. However, calculating precise TC values is challenging, especially when the closed-form distributions of embedding variables are unknown. In this paper, we introduce a unified framework to estimate total correlation values with sample-based mutual information (MI) estimators. More specifically, we discover a relation between TC and MI and propose two types of calculation paths (tree-like and line-like) to decompose TC into MI terms. With each MI term being bounded, the TC values can be successfully estimated. Further, we provide theoretical analyses concerning the statistical consistency of the proposed TC estimators. Experiments are presented on both synthetic and real-world scenarios, where our estimators demonstrate effectiveness in all TC estimation, minimization, and maximization tasks. The code is available at https://github.com/Linear95/TC-estimation.