论文标题
STCNET:工业烟雾检测的时空跨网络
STCNet: Spatio-Temporal Cross Network for Industrial Smoke Detection
论文作者
论文摘要
工业烟雾排放对天然生态系统和人类健康构成了严重威胁。先前的工作表明,使用计算机视觉技术识别烟雾是一种低成本和方便的方法。但是,工业烟雾检测是一项艰巨的任务,因为工业排放颗粒通常在堆栈或设施外迅速腐烂,并且蒸汽与烟雾非常相似。为了克服这些问题,提出了一种新型的时空跨网络(STCNET)来识别工业烟气排放。所提出的STCNET涉及一种空间途径来提取纹理特征和捕获烟雾运动信息的时间途径。我们假设空间和时间途径可以相互指导。例如,空间路径可以很容易地识别出明显的干扰,例如树木和建筑物,而时间道路可以突出烟雾运动的模糊痕迹。如果这两种途径可以互相指导,则将有助于烟雾检测性能。此外,我们设计了一个高效,简洁的时空双金字塔结构,以确保更好地融合多尺度时空信息。最后,公共数据集的广泛实验表明,我们的STCNET在对最佳竞争对手的挑战性上升工业烟雾检测数据集方面取得了明显的改进,提高了6.2%。该代码将提供:https://github.com/caoyichao/stcnet。
Industrial smoke emissions present a serious threat to natural ecosystems and human health. Prior works have shown that using computer vision techniques to identify smoke is a low cost and convenient method. However, industrial smoke detection is a challenging task because industrial emission particles are often decay rapidly outside the stacks or facilities and steam is very similar to smoke. To overcome these problems, a novel Spatio-Temporal Cross Network (STCNet) is proposed to recognize industrial smoke emissions. The proposed STCNet involves a spatial pathway to extract texture features and a temporal pathway to capture smoke motion information. We assume that spatial and temporal pathway could guide each other. For example, the spatial path can easily recognize the obvious interference such as trees and buildings, and the temporal path can highlight the obscure traces of smoke movement. If the two pathways could guide each other, it will be helpful for the smoke detection performance. In addition, we design an efficient and concise spatio-temporal dual pyramid architecture to ensure better fusion of multi-scale spatiotemporal information. Finally, extensive experiments on public dataset show that our STCNet achieves clear improvements on the challenging RISE industrial smoke detection dataset against the best competitors by 6.2%. The code will be available at: https://github.com/Caoyichao/STCNet.