论文标题

可逆性神经网络,用于光声成像中的不确定性定量

Invertible Neural Networks for Uncertainty Quantification in Photoacoustic Imaging

论文作者

Nölke, Jan-Hinrich, Adler, Tim, Gröhl, Janek, Kirchner, Thomas, Ardizzone, Lynton, Rother, Carsten, Köthe, Ullrich, Maier-Hein, Lena

论文摘要

多光谱光声成像(PAI)是一种新兴的成像方式,它可以恢复功能性组织参数,例如血液氧合。但是,基本的反问题潜在地位不足,这意味着从理论上讲,根本不同的组织特性可能会产生可比的测量值。在这项工作中,我们通过利用条件可逆神经网络(CINN)的概念来介绍一种新的方法来处理这种特定类型的不确定性。具体而言,我们提出的是超出组织氧合的常用点估计值,并将单像素初始压力光谱转换为完整的后验概率密度。这样,问题的固有歧义可以用输出中的多种模式编码。基于提出的体系结构,我们演示了两个用例,这些用例不仅利用此信息来检测和量化,而且还弥补了不确定性:(1)光声设备设计和(2)优化光声图像采集。我们的计算机研究表明,所提出的方法是用PAI重建生理参数的不确定性感知的重要组成部分。

Multispectral photoacoustic imaging (PAI) is an emerging imaging modality which enables the recovery of functional tissue parameters such as blood oxygenation. However, the underlying inverse problems are potentially ill-posed, meaning that radically different tissue properties may - in theory - yield comparable measurements. In this work, we present a new approach for handling this specific type of uncertainty by leveraging the concept of conditional invertible neural networks (cINNs). Specifically, we propose going beyond commonly used point estimates for tissue oxygenation and converting single-pixel initial pressure spectra to the full posterior probability density. This way, the inherent ambiguity of a problem can be encoded with multiple modes in the output. Based on the presented architecture, we demonstrate two use cases which leverage this information to not only detect and quantify but also to compensate for uncertainties: (1) photoacoustic device design and (2) optimization of photoacoustic image acquisition. Our in silico studies demonstrate the potential of the proposed methodology to become an important building block for uncertainty-aware reconstruction of physiological parameters with PAI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源