论文标题

用于概率逆动力学学习的差异无限混合物

A Variational Infinite Mixture for Probabilistic Inverse Dynamics Learning

论文作者

Abdulsamad, Hany, Nickl, Peter, Klink, Pascal, Peters, Jan

论文摘要

控制和机器人技术应用程序中的概率回归技术必须满足数据驱动的适应性,计算效率,对高维度的可扩展性以及处理数据中不同方式的能力的不同标准。经典回归器通常仅符合这些属性的一个子集。在这项工作中,我们扩展了贝叶斯非参数混合物的开创性工作,并得出了具有良好的确定性量化的概率局部多项式模型的无限混合物的有效变异贝叶推理技术。我们强调了该模型在结合数据驱动的复杂性适应性,快速预测以及处理不连续函数和异方差噪声的能力方面的力量。我们将该技术基于一系列大型真实的逆动力数据集进行了基准测试,表明无限混合物配方与经典的本地学习方法具有竞争力,并通过根据数据调整组件的数量并不依赖启发式方法来使模型的复杂性正规化。此外,为了展示该方法的实用性,我们使用学习的模型来在线逆动力控制Barrett-Wam操纵器,从而大大提高了轨迹跟踪性能。

Probabilistic regression techniques in control and robotics applications have to fulfill different criteria of data-driven adaptability, computational efficiency, scalability to high dimensions, and the capacity to deal with different modalities in the data. Classical regressors usually fulfill only a subset of these properties. In this work, we extend seminal work on Bayesian nonparametric mixtures and derive an efficient variational Bayes inference technique for infinite mixtures of probabilistic local polynomial models with well-calibrated certainty quantification. We highlight the model's power in combining data-driven complexity adaptation, fast prediction and the ability to deal with discontinuous functions and heteroscedastic noise. We benchmark this technique on a range of large real inverse dynamics datasets, showing that the infinite mixture formulation is competitive with classical Local Learning methods and regularizes model complexity by adapting the number of components based on data and without relying on heuristics. Moreover, to showcase the practicality of the approach, we use the learned models for online inverse dynamics control of a Barrett-WAM manipulator, significantly improving the trajectory tracking performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源