论文标题

Zakharov-Kolmogorov频谱的证据中,惯性波湍流的数值模拟

Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence

论文作者

Reun, Thomas Le, Favier, Benjamin, Bars, Michael Le

论文摘要

旋转的湍流通常以被沿旋转轴不变并经历逆级联反向的地质涡流而闻名。然而,最近已证明它可以维持具有低级能量级联的完全三维状态。在这封信中,我们通过在三维旋转湍流中通过直接数值模拟在三维旋转湍流中的统计特性进行了三维旋转的湍流。由此产生的湍流是惯性波湍流,验证了由Galtier分析得出的Zakharov-Kolmogorov光谱(Phys。E,68,2003),从而提供了三维,Anisotropic Waves波湍流理论相关的数值证明。最后,我们表明相同的强迫会导致地质或波湍流,具体取决于初始条件。因此,我们的结果为旋转湍流中的双重稳定性带来了进一步的证据。

Rotating turbulence is commonly known for being dominated by geostrophic vortices that are invariant along the rotation axis and undergo inverse cascade. Yet, it has recently been shown to sustain fully three-dimensional states with a downscale energy cascade. In this letter, we investigate the statistical properties of three-dimensional rotating turbulence by the means of direct numerical simulations in a triply periodic box where geostrophic vortices are specifically damped. The resulting turbulent flow is an inertial wave turbulence that verifies the Zakharov-Kolmogorov spectrum derived analytically by Galtier (Phys. Rev. E, 68, 2003), thus offering numerical proof of the relevance of wave turbulence theory for three-dimensional, anisotropic waves. Lastly, we show that the same forcing leads to either geostrophic or wave turbulence depending on the initial condition. Our results thus bring further evidence for bi-stability in rotating turbulent flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源