论文标题

通过辅助变量的本地探索来学习离散的基于能量的模型

Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration

论文作者

Dai, Hanjun, Singh, Rishabh, Dai, Bo, Sutton, Charles, Schuurmans, Dale

论文摘要

离散结构在程序语言建模和软件工程等应用中起着重要作用。当前预测复杂结构的方法通常会考虑其障碍性的自回归模型,并具有一些灵活性。另一方面,基于能量的模型(EBM)为建模这种分布提供了更灵活,更强大的方法,但需要分区功能估计。在本文中,我们提出了芦荟,这是一种用于学习有条件和无条件EBM的新算法,用于离散结构化数据,其中使用学到的模拟本地搜索的学习采样器估算参数梯度。我们表明,可以通过新的功率迭代形式进行有效培训能量功能和采样器,从而在灵活性和拖延性之间取得更好的权衡。在实验上,我们表明,学习本地搜索会导致具有挑战性的应用领域的显着改善。最值得注意的是,我们提出了一种用于软件测试的能源模型指导的Fuzzer,其性能与Libfuzzer等精心设计的模糊发动机相当。

Discrete structures play an important role in applications like program language modeling and software engineering. Current approaches to predicting complex structures typically consider autoregressive models for their tractability, with some sacrifice in flexibility. Energy-based models (EBMs) on the other hand offer a more flexible and thus more powerful approach to modeling such distributions, but require partition function estimation. In this paper we propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data, where parameter gradients are estimated using a learned sampler that mimics local search. We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration, achieving a better trade-off between flexibility and tractability. Experimentally, we show that learning local search leads to significant improvements in challenging application domains. Most notably, we present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源