论文标题
用于扭曲图像恢复的生成和歧视性学习
Generative and Discriminative Learning for Distorted Image Restoration
论文作者
论文摘要
液化是图像编辑的常见技术,可用于图像失真。由于失真变化的不确定性,恢复由液化过滤器引起的扭曲图像是一项艰巨的任务。要以有效的方式编辑图像,预计扭曲的图像将自动恢复。本文的目的是扭曲的图像修复,其特征是寻求适当的翘曲和完成扭曲的图像。现有的方法着重于硬件辅助或几何原理来解决由自然现象引起的特定规则变形,但它们无法处理此任务中人工失真的不规则性和不确定性。为了解决这个问题,我们提出了一种基于深层神经网络的新颖生成和歧视性学习方法,该方法可以学习各种重建映射并代表复杂且高维数据。该方法将任务分解为纠正阶段和改进阶段。第一阶段生成网络可预测从变形图像到整流图像的映射。然后,第二阶段生成网络进一步优化了感知质量。由于没有可用的数据集或基准测试来探索此任务,因此我们通过基于Celeba数据集的正向失真映射创建一个失真的面部数据集(DFD)。对拟议的基准进行了广泛的实验评估,并且应用表明我们的方法是扭曲图像恢复的有效方法。
Liquify is a common technique for image editing, which can be used for image distortion. Due to the uncertainty in the distortion variation, restoring distorted images caused by liquify filter is a challenging task. To edit images in an efficient way, distorted images are expected to be restored automatically. This paper aims at the distorted image restoration, which is characterized by seeking the appropriate warping and completion of a distorted image. Existing methods focus on the hardware assistance or the geometric principle to solve the specific regular deformation caused by natural phenomena, but they cannot handle the irregularity and uncertainty of artificial distortion in this task. To address this issue, we propose a novel generative and discriminative learning method based on deep neural networks, which can learn various reconstruction mappings and represent complex and high-dimensional data. This method decomposes the task into a rectification stage and a refinement stage. The first stage generative network predicts the mapping from the distorted images to the rectified ones. The second stage generative network then further optimizes the perceptual quality. Since there is no available dataset or benchmark to explore this task, we create a Distorted Face Dataset (DFD) by forward distortion mapping based on CelebA dataset. Extensive experimental evaluation on the proposed benchmark and the application demonstrates that our method is an effective way for distorted image restoration.