论文标题
耐火掺杂二硝酸钛纳米级发射器
Refractory doped titanium nitride nanoscale field emitters
论文作者
论文摘要
耐火材料具有很高的损伤耐受性,这对于需要在高峰值电流密度和光学强度下运行的纳米级现场发射电子和光电应用应用具有吸引力。最近的结果表明,可以通过添加硅和氧掺杂剂来调整硝酸钛(耐火和CMOS兼容的等离子材料)的光学性质。但是,为了充分利用钛(硅氧)氮化物的潜力,需要一个可靠的可扩展制造工艺,具有较少的NM精度。在这项工作中,我们开发了一种制造工艺,用于生产具有10到15 nm之间间隙的工程纳米结构,其宽高比大于5,而陡峭的侧壁几乎为90°。使用此过程,我们制造了大规模的电弓形纳米annoantennas,具有很少的nm自由空间间隙。我们在平均间隙大小中测量了4 nm的典型变化。使用应用的直流电压和光照明,我们测试了设备的电子和光电子响应,证明了整个自由空间间隙的低于10-V的隧道操作,以及在1.2μm下高达1E-3的量子效率,与同一波长的散装硅光二极管可比。测试表明,钛氧硝酸盐纳米结构并未显着降解,在运行大约6小时后,在几毫米^2区域内平均间隙尺寸的收缩率少于5 nm。我们的结果将有助于开发下一代可靠和CMOS兼容的纳米级设备,用于高速和低功率场发射电子以及光电子的应用。
Refractory materials exhibit high damage tolerance, which is attractive for the creation of nanoscale field-emission electronics and optoelectronics applications that require operation at high peak current densities and optical intensities. Recent results have demonstrated that the optical properties of titanium nitride, a refractory and CMOS-compatible plasmonic material, can be tuned by adding silicon and oxygen dopants. However, to fully leverage the potential of titanium (silicon oxy)nitride, a reliable and scalable fabrication process with few-nm precision is needed. In this work, we developed a fabrication process for producing engineered nanostructures with gaps between 10 and 15 nm, aspect ratios larger than 5 with almost 90° steep sidewalls. Using this process, we fabricated large-scale arrays of electrically-connected bow-tie nanoantennas with few-nm free-space gaps. We measured a typical variation of 4 nm in the average gap size. Using applied DC voltages and optical illumination, we tested the electronic and optoelectronic response of the devices, demonstrating sub-10-V tunneling operation across the free-space gaps, and quantum efficiency of up to 1E-3 at 1.2 μm, which is comparable to a bulk silicon photodiode at the same wavelength. Tests demonstrated that the titanium silicon oxynitride nanostructures did not significantly degrade, exhibiting less than 5 nm of shrinking of the average gap dimensions over few-μm^2 areas after roughly 6 hours of operation. Our results will be useful for developing the next generation of robust and CMOS-compatible nanoscale devices for high-speed and low-power field-emission electronics and optoelectronics applications.