论文标题
加密的量子统计力学:达到经典块密码的速度限制
Quantum statistical mechanics of encryption: reaching the speed limit of classical block ciphers
论文作者
论文摘要
我们通过在Pauli字符串的双重空间中通过经典块密码进行加密,该公式使我们能够通过使用在量子多体系统的分析中使用众所周知的工具来表征经典的密码。我们将明文和密文攻击连接到超时订单相关器(OTOC),并使用在字符串空间中的离域量度(例如参与率和从字符串空间中的波浪函数振幅获得的相应熵)中量化密码的质量。弦空间信息熵的饱和伴随着OTOC的消失。这些信号的不可逆性和混乱在一起,我们将其作为良好经典密码的定义特性。更确切地说,我们通过要求OTOC消失至指数精度来定义一个好的密码,并且该字符串嵌入到与随机置换相关的值中饱和,这些值在论文中明确计算出来。我们认为,可以通过$ {\ cal o}(\ cal o}(n \ log n)$门排列在树结构上的随机可逆电路实现的$ n $ bit Block密码可以满足这些条件,$ n/3 $ 3 $ 3 $ 3位的门排列在树结构上,为此,“键”独特地指定了构成电路的一组门。我们表明,为了达到此“速度限制”,必须采用一个三阶段电路,该电路由非线性大门层实施的阶段组成,这些阶段扩大了弦数的数量,两侧是另外两个阶段,每个阶段都部署了一组特殊的“通货膨胀”门的层,以加速小单个弦的生长。浅,$ {\ cal o}(\ log n)$ - 此处所述类型的深度密码可用于构建一个多项式跨越方案,以计算在另一个出版物中提出的加密数据,以作为同型加密的替代方案。
We cast encryption via classical block ciphers in terms of operator spreading in a dual space of Pauli strings, a formulation which allows us to characterize classical ciphers by using tools well known in the analysis of quantum many-body systems. We connect plaintext and ciphertext attacks to out-of-time order correlators (OTOCs) and quantify the quality of ciphers using measures of delocalization in string space such as participation ratios and corresponding entropies obtained from the wave function amplitudes in string space. The saturation of the string-space information entropy is accompanied by the vanishing of OTOCs. Together these signal irreversibility and chaos, which we take to be the defining properties of good classical ciphers. More precisely, we define a good cipher by requiring that the OTOCs vanish to exponential precision and that the string entropies saturate to the values associated with a random permutation, which are computed explicitly in the paper. We argue that these conditions can be satisfied by $n$-bit block ciphers implemented via random reversible circuits with ${\cal O}(n \log n)$ gates arranged on a tree structure, with layers of $n/3$ 3-bit gates, for which a "key" specifies uniquely the sequence of gates that comprise the circuit. We show that in order to reach this "speed limit" one must employ a three-stage circuit consisting of a stage implemented by layers of nonlinear gates that proliferate the number of strings, flanked by two other stages, each deploying layers of a special set of linear "inflationary" gates that accelerate the growth of small individual strings. A shallow, ${\cal O}(\log n)$-depth cipher of the type described here can be used in constructing a polynomial-overhead scheme for computation on encrypted data proposed in another publication as an alternative to Homomorphic Encryption.