论文标题

弯曲的空间中的经典双副本:双方标量的扰动阳米尔

The classical double copy in curved spacetimes: Perturbative Yang-Mills from the bi-adjoint scalar

论文作者

Prabhu, Siddharth G.

论文摘要

我们在弯曲的空间中为经典字段制定了双副本的版本。我们提供了对双聚体标量方程与位置空间中Yang-Mills方程的扰动溶液之间的对应关系。在线性层面上,我们表明,这些解决方案之间存在图形,以实现最大对称的时空背景,这通过适当的差异操作员在双活动标量量表解决方案上提供了每个Yang-Mills解决方案。鉴于存在线性化的映射,我们表明可以按照相应的双聚体标量解决方案以任意扰动顺序以任意扰动顺序施放Yang-Mills方程的解决方案。此全阶映射让人联想到平面BCJ双拷贝,并适用于扰动膨胀所保持的任何弯曲时空。我们表明,这些结果具有正确的固定空间极限,并且对应关系对量规的选择不可知。

We formulate a version of the double copy for classical fields in curved spacetimes. We provide a correspondence between perturbative solutions to the bi-adjoint scalar equations and those of the Yang-Mills equations in position space. At the linear level, we show that there exists a map between these solutions for maximally symmetric spacetime backgrounds, that provides every Yang-Mills solution by the action of an appropriate differential operator on a bi-adjoint scalar solution. Given the existence of a linearized map, we show that it is possible to cast the solutions of the Yang-Mills equations at arbitrary perturbation order in terms of the corresponding bi-adjoint scalar solutions. This all-order map is reminiscent of the flat space BCJ double copy, and works for any curved spacetime where the perturbative expansion holds. We show that these results have the right flat space limit, and that the correspondence is agnostic to the choice of gauge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源