论文标题

域级别的解释性 - 建立对超人AI策略的信任的挑战

Domain-Level Explainability -- A Challenge for Creating Trust in Superhuman AI Strategies

论文作者

Andrulis, Jonas, Meyer, Ole, Schott, Grégory, Weinbach, Samuel, Gruhn, Volker

论文摘要

对于战略问题,基于深入强化学习(DRL)的智能系统表现出了令人印象深刻的学习能力,可以超越人类能力,尤其是在处理复杂方案时。尽管这为开发具有突破性功能的智能援助系统创造了新的机会,但将该技术应用于现实世界中的问题会带来重大风险,因此需要信任其透明度和可靠性。从定义上讲,超级人类策略是非直觉和复杂的,并且禁止可靠的绩效评估,因此难以实现信任的关键组成部分。可解释的AI(XAI)通过各种措施成功地提高了现代AI系统的透明度,但是,XAI研究尚未提供为战略情况下的专家用户提供域级别的方法。在本文中,我们讨论了基于超人DRL的策略的存在,它们的特性,将它们转化为现实世界环境的要求和挑战,以及通过解释性作为关键技术而对信任的影响。

For strategic problems, intelligent systems based on Deep Reinforcement Learning (DRL) have demonstrated an impressive ability to learn advanced solutions that can go far beyond human capabilities, especially when dealing with complex scenarios. While this creates new opportunities for the development of intelligent assistance systems with groundbreaking functionalities, applying this technology to real-world problems carries significant risks and therefore requires trust in their transparency and reliability. With superhuman strategies being non-intuitive and complex by definition and real-world scenarios prohibiting a reliable performance evaluation, the key components for trust in these systems are difficult to achieve. Explainable AI (XAI) has successfully increased transparency for modern AI systems through a variety of measures, however, XAI research has not yet provided approaches enabling domain level insights for expert users in strategic situations. In this paper, we discuss the existence of superhuman DRL-based strategies, their properties, the requirements and challenges for transforming them into real-world environments, and the implications for trust through explainability as a key technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源