论文标题

对抗性图像颜色转换在明确的彩色滤清器空间中

Adversarial Image Color Transformations in Explicit Color Filter Space

论文作者

Zhao, Zhengyu, Liu, Zhuoran, Larson, Martha

论文摘要

深度神经网络已被证明容易受到对抗图像的影响。传统的攻击努力争取严格限制扰动的不可区分的对抗图像。最近,研究人员已采取行动探索可区分但非奇异的对抗图像,并证明色彩转化攻击是有效的。在这项工作中,我们提出了对抗色过滤器(ADVCF),这是一种新型的色彩转化攻击,在简单颜色过滤器的参数空间中优化了梯度信息。特别是,明确指定了我们的颜色滤波器空间,以便从攻击和防御角度来对对抗性色转换进行系统的鲁棒性分析。相比之下,由于缺乏这种明确的空间,现有的颜色转换攻击并不能为系统分析提供机会。我们进一步证明了ADVCF在欺骗图像分类器方面的有效性,并将其与其他颜色转换攻击进行了比较,以通过广泛的用户研究对防御性和图像可接受性进行稳健性和图像可接受性进行比较。我们还强调了ADVCF的人类解动,并显示了其优于最先进的人解释的色彩转化攻击对图像可接受性和效率的优势。其他结果为在另外三个视觉任务中针对ADVCF的模型鲁棒性提供了有趣的新见解。

Deep Neural Networks have been shown to be vulnerable to adversarial images. Conventional attacks strive for indistinguishable adversarial images with strictly restricted perturbations. Recently, researchers have moved to explore distinguishable yet non-suspicious adversarial images and demonstrated that color transformation attacks are effective. In this work, we propose Adversarial Color Filter (AdvCF), a novel color transformation attack that is optimized with gradient information in the parameter space of a simple color filter. In particular, our color filter space is explicitly specified so that we are able to provide a systematic analysis of model robustness against adversarial color transformations, from both the attack and defense perspectives. In contrast, existing color transformation attacks do not offer the opportunity for systematic analysis due to the lack of such an explicit space. We further demonstrate the effectiveness of our AdvCF in fooling image classifiers and also compare it with other color transformation attacks regarding their robustness to defenses and image acceptability through an extensive user study. We also highlight the human-interpretability of AdvCF and show its superiority over the state-of-the-art human-interpretable color transformation attack on both image acceptability and efficiency. Additional results provide interesting new insights into model robustness against AdvCF in another three visual tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源