论文标题
通过室温原子层替代设计人工二维景观
Designing Artificial Two-Dimensional Landscapes via Room-Temperature Atomic-Layer Substitution
论文作者
论文摘要
用原子尺度的精度操纵材料对于开发下一代材料设计工具箱至关重要。已经做出了巨大的努力,以提高材料沉积和图案的组成,结构和空间精度。 2D材料的家族为实现原子水平的材料架构提供了理想的平台。这些材料的广泛物理学导致了异质结构,超晶格和扭曲结构的制造,并具有突破性的发现和应用。在这里,我们报告了一种新型的原子尺度材料设计工具,该工具在室温下有选择性地打破并形成2D材料的化学键,称为原子层取代(ALS),通过该材料,我们可以使用任意模式在3-原子 - thick-thick-thick-thick-exogen dichalcogenides中替代顶层的chalcogen原子。通过传输翻转层使我们能够在另一侧执行相同的过程,从而产生具有不同平面外晶体对称性和电动极化的可编程内多型物结构。第一原则计算阐明了ALS过程在能量的总体放热状态,并且只有一个小反应屏障,从而促进了在室温下发生的反应。光学特征证实了这种设计方法的保真度,而TEM显示了Janus结构的直接证据,并提出了设计异质结构界面处的原子过渡。最后,在Moxy(X,Y = S,SE; X和Y对应于底层和顶层)上的传输和开尔文探针测量结果揭示了每个区域的表面电势和偶极方向,以及它们之间的屏障高度。我们将人工2D景观设计到单层原子的方法可能会导致以前在自然界中没有发现的独特的电子,光子和机械性能。
Manipulating materials with atomic-scale precision is essential for the development of next-generation material design toolbox. Tremendous efforts have been made to advance the compositional, structural, and spatial accuracy of material deposition and patterning. The family of 2D materials provides an ideal platform to realize atomic-level material architectures. The wide and rich physics of these materials have led to fabrication of heterostructures, superlattices, and twisted structures with breakthrough discoveries and applications. Here, we report a novel atomic-scale material design tool that selectively breaks and forms chemical bonds of 2D materials at room temperature, called atomic-layer substitution (ALS), through which we can substitute the top layer chalcogen atoms within the 3-atom-thick transition-metal dichalcogenides using arbitrary patterns. Flipping the layer via transfer allows us to perform the same procedure on the other side, yielding programmable in-plane multi-heterostructures with different out-of-plane crystal symmetry and electric polarization. First-principle calculations elucidate how the ALS process is overall exothermic in energy and only has a small reaction barrier, facilitating the reaction to occur at room temperature. Optical characterizations confirm the fidelity of this design approach, while TEM shows the direct evidence of Janus structure and suggests the atomic transition at the interface of designed heterostructure. Finally, transport and Kelvin probe measurements on MoXY (X,Y=S,Se; X and Y corresponding to the bottom and top layers) lateral multi-heterostructures reveal the surface potential and dipole orientation of each region, and the barrier height between them. Our approach for designing artificial 2D landscape down to a single layer of atoms can lead to unique electronic, photonic and mechanical properties previously not found in nature.