论文标题

QoS预测的概率分布和位置感知的重新连接方法

A Probability Distribution and Location-aware ResNet Approach for QoS Prediction

论文作者

Zhang, Wenyan, Xu, Ling, Yan, Meng, Wang, Ziliang, Fu, Chunlei

论文摘要

近年来,在线服务的数量迅速增加,通过云平台援引所需的服务已成为主要趋势。如何帮助用户在大量未使用的服务中选择并推荐高质量的服务已成为研究中的热门问题。在现有的QoS预测方法中,协作过滤(CF)方法只能学习低维线性特征,其效果受稀疏数据的限制。尽管现有的深度学习方法可以更好地捕获高维的非线性特征,但其中大多数仅使用身份的单一特征,而网络加深梯度消失的问题是严重的,因此QoS预测的效果不令人满意。为了解决这些问题,我们提出了QoS预测(PLES)的高级概率分布和位置感知的重新连接方法。这种方法考虑了用户和服务的历史调用概率分布和位置特征,并首先使用QoS预测中的重新连接来重新使用这些功能,从而减轻了梯度消失和模型退化的问题。在现实世界中的Web服务数据集WS-Dream上进行了一系列实验。结果表明,PLES模型对于QoS预测有效,密度为5%-30%,这意味着数据稀疏,它的表现明显优于最先进的方法LDCF,就MAE而言。

In recent years, the number of online services has grown rapidly, invoke the required services through the cloud platform has become the primary trend. How to help users choose and recommend high-quality services among huge amounts of unused services has become a hot issue in research. Among the existing QoS prediction methods, the collaborative filtering(CF) method can only learn low-dimensional linear characteristics, and its effect is limited by sparse data. Although existing deep learning methods could capture high-dimensional nonlinear features better, most of them only use the single feature of identity, and the problem of network deepening gradient disappearance is serious, so the effect of QoS prediction is unsatisfactory. To address these problems, we propose an advanced probability distribution and location-aware ResNet approach for QoS Prediction(PLRes). This approach considers the historical invocations probability distribution and location characteristics of users and services, and first use the ResNet in QoS prediction to reuses the features, which alleviates the problems of gradient disappearance and model degradation. A series of experiments are conducted on a real-world web service dataset WS-DREAM. The results indicate that PLRes model is effective for QoS prediction and at the density of 5%-30%, which means the data is sparse, it significantly outperforms a state-of-the-art approach LDCF by 12.35%-15.37% in terms of MAE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源