论文标题

在图表上进行多次随机步行:混合很少覆盖许多

Multiple Random Walks on Graphs: Mixing Few to Cover Many

论文作者

Rivera, Nicolás, Sauerwald, Thomas, Sylvester, John

论文摘要

对于许多随机算法和随机过程,随机行走是必不可少的原始性。很自然地问通过独立且并行运行$ k $多次随机步行可以获得多少。尽管已经研究了许多自然网络的多次步行时间的覆盖时间,但发现最差的开始顶点的多个覆盖时间的一般表征的问题(由Alon,Avin,Koucký,Koucký,Kozma,Lotker和Tuttle〜在2008年在2008年)仍然是一个开放的问题。 首先,当$ k $随机步行从固定分布采样的顶点开始时,我们在固定覆盖时间上改善和收紧了各个界限。例如,我们证明了固定覆盖时间的$ω((n/k)\ log n)$的无条件下限,用于任何$ n $ vertex Graph $ g $和任何$ 1 \ leq k = o(n \ log n)$。其次,我们在几个基本网络上建立了多个步行的固定覆盖时间,直到不变因素。第三,我们提出了一个框架,描述了固定覆盖时间和一个新颖的,轻松的混合时间的概念,用于多次散步,称为部分混合时间。粗略地说,部分混合时间只需要混合所有随机步行的特定部分。使用这些新概念,我们可以为许多网络建立(或恢复)最差的覆盖时间,包括扩展程序,优先附件图,网格,二进制树和超振烟。

Random walks on graphs are an essential primitive for many randomised algorithms and stochastic processes. It is natural to ask how much can be gained by running $k$ multiple random walks independently and in parallel. Although the cover time of multiple walks has been investigated for many natural networks, the problem of finding a general characterisation of multiple cover times for worst-case start vertices (posed by Alon, Avin, Koucký, Kozma, Lotker, and Tuttle~in 2008) remains an open problem. First, we improve and tighten various bounds on the stationary cover time when $k$ random walks start from vertices sampled from the stationary distribution. For example, we prove an unconditional lower bound of $Ω((n/k) \log n)$ on the stationary cover time, holding for any $n$-vertex graph $G$ and any $1 \leq k =o(n\log n )$. Secondly, we establish the stationary cover times of multiple walks on several fundamental networks up to constant factors. Thirdly, we present a framework characterising worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time for multiple walks called the partial mixing time. Roughly speaking, the partial mixing time only requires a specific portion of all random walks to be mixed. Using these new concepts, we can establish (or recover) the worst-case cover times for many networks including expanders, preferential attachment graphs, grids, binary trees and hypercubes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源