论文标题
复杂网络的无模型隐藏几何形状
Model-free hidden geometry of complex networks
论文作者
论文摘要
将网络嵌入度量空间中的基本思想植根于邻近保存原则。节点被映射到空间的点,以成对距离,反映其在网络中的接近度。网络嵌入的流行方法要么依赖于接近原理的隐式近似值,要么通过执行嵌入空间的几何形状来实现它,从而阻碍网络可能自发显示的几何特性。在这里,我们利用了一种明确设计用于保存成对接近度的无模型嵌入方法,并表征了从真实和合成的几个网络的映射中弹出的几何形状。我们表明,学到的嵌入具有简单而直观的解释:节点与几何中心的距离是其亲密的中心性的代表,并且节点的相对位置反映了网络的社区结构。近端可以保留在相对较低的嵌入空间中,而隐藏的几何形状在指导贪婪导航方面显示出最佳性能,而不管特定的网络拓扑如何。我们最终表明,映射提供了网络上传染过程的自然描述,复杂的时空图案由从几何中心传播到外围的波浪表示。这些发现加深了我们对复杂网络的无模型隐藏几何形状的理解。
The fundamental idea of embedding a network in a metric space is rooted in the principle of proximity preservation. Nodes are mapped into points of the space with pairwise distance that reflects their proximity in the network. Popular methods employed in network embedding either rely on implicit approximations of the principle of proximity preservation or implement it by enforcing the geometry of the embedding space, thus hindering geometric properties that networks may spontaneously exhibit. Here, we take advantage of a model-free embedding method explicitly devised for preserving pairwise proximity, and characterize the geometry emerging from the mapping of several networks, both real and synthetic. We show that the learned embedding has simple and intuitive interpretations: the distance of a node from the geometric center is representative for its closeness centrality, and the relative positions of nodes reflect the community structure of the network. Proximity can be preserved in relatively low-dimensional embedding spaces, and the hidden geometry displays optimal performance in guiding greedy navigation regardless of the specific network topology. We finally show that the mapping provides a natural description of contagion processes on networks, with complex spatiotemporal patterns represented by waves propagating from the geometric center to the periphery. The findings deepen our understanding of the model-free hidden geometry of complex networks.