论文标题

全球道路伤害检测:最先进的解决方案

Global Road Damage Detection: State-of-the-art Solutions

论文作者

Arya, Deeksha, Maeda, Hiroya, Ghosh, Sanjay Kumar, Toshniwal, Durga, Omata, Hiroshi, Kashiyama, Takehiro, Sekimoto, Yoshihide

论文摘要

本文总结了全球道路损害检测挑战(GRDDC),这是一个大数据杯,是IEEE国际大数据2020年国际会议的一部分。大数据杯挑战涉及发布的数据集和明确的评估指标定义明确的问题。这些挑战在数据竞赛平台上扎根,该平台维持参与者的排行榜。在提出的案例中,数据构成了从印度,日本和捷克共和国收集的2636号道路图像,以提出用于自动检测这些国家道路损失的方法。总共有来自几个国家的121支球队参加了这场比赛。使用两个数据集Test1和Test2评估了提交的解决方案,其中包括2,631和2,664张图像。本文封装了这些团队提出的前12个解决方案。最佳性能模型利用基于YOLO的集合学习在Test1上产生0.67的F1分数,在Test2上得出0.66。本文以对在提出的挑战中效果很好的方面以及在未来挑战中得到改善的方面进行了审查。

This paper summarizes the Global Road Damage Detection Challenge (GRDDC), a Big Data Cup organized as a part of the IEEE International Conference on Big Data'2020. The Big Data Cup challenges involve a released dataset and a well-defined problem with clear evaluation metrics. The challenges run on a data competition platform that maintains a leaderboard for the participants. In the presented case, the data constitute 26336 road images collected from India, Japan, and the Czech Republic to propose methods for automatically detecting road damages in these countries. In total, 121 teams from several countries registered for this competition. The submitted solutions were evaluated using two datasets test1 and test2, comprising 2,631 and 2,664 images. This paper encapsulates the top 12 solutions proposed by these teams. The best performing model utilizes YOLO-based ensemble learning to yield an F1 score of 0.67 on test1 and 0.66 on test2. The paper concludes with a review of the facets that worked well for the presented challenge and those that could be improved in future challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源