论文标题
通过细心的分组改善和可解释的深度度量学习
Towards Improved and Interpretable Deep Metric Learning via Attentive Grouping
论文作者
论文摘要
分组通常用于深度度量学习中,以计算各种特征。但是,当前的方法容易过度拟合和缺乏可解释性。在这项工作中,我们提出了一种改进且可解释的分组方法,可以灵活地与任何度量学习框架集成。我们的方法基于注意机制,每个组都有可学习的查询。该查询是完全可训练的,并且在多样性损失结合使用时可以捕获特定于小组的信息。我们方法的一个吸引人的特性是它自然可以解释性。可学习的查询与每个空间位置之间的注意力得分可以解释为该位置的重要性。我们正式表明,我们提出的分组方法是特征的空间排列不变的。当用作卷积神经网络中的模块时,我们的方法会导致转化不变性。我们进行全面的实验来评估我们的方法。我们的定量结果表明,所提出的方法在不同的数据集,评估指标,基本模型和损失函数上始终如一地优于先验方法。据我们所知,我们的解释结果首次清楚地表明,所提出的方法可以学习各个组的独特和多样化的特征。该代码可在https://github.com/xinyixuxd/dgml-master上找到。
Grouping has been commonly used in deep metric learning for computing diverse features. However, current methods are prone to overfitting and lack interpretability. In this work, we propose an improved and interpretable grouping method to be integrated flexibly with any metric learning framework. Our method is based on the attention mechanism with a learnable query for each group. The query is fully trainable and can capture group-specific information when combined with the diversity loss. An appealing property of our method is that it naturally lends itself interpretability. The attention scores between the learnable query and each spatial position can be interpreted as the importance of that position. We formally show that our proposed grouping method is invariant to spatial permutations of features. When used as a module in convolutional neural networks, our method leads to translational invariance. We conduct comprehensive experiments to evaluate our method. Our quantitative results indicate that the proposed method outperforms prior methods consistently and significantly across different datasets, evaluation metrics, base models, and loss functions. For the first time to the best of our knowledge, our interpretation results clearly demonstrate that the proposed method enables the learning of distinct and diverse features across groups. The code is available on https://github.com/XinyiXuXD/DGML-master.