论文标题

多通道自动语音识别使用深度复杂的UNET

Multi-Channel Automatic Speech Recognition Using Deep Complex Unet

论文作者

Kong, Yuxiang, Wu, Jian, Wang, Quandong, Gao, Peng, Zhuang, Weiji, Wang, Yujun, Xie, Lei

论文摘要

多通道自动语音识别(ASR)系统中的前端模块主要使用麦克风阵列技术在带回响和回声的嘈杂条件下产生增强的信号。最近,基于神经网络(NN)的前端已经显示出对常规信号处理方法的有希望的改善。在本文中,我们建议采用深层复杂的UNET(DCUNET)的架构 - 一个强大的复杂值的不结构的语音增强模型 - 作为多通道声学模型的前端,并将它们集成到多任务学习(MTL)框架中,以及比较的级联框架。同时,我们通过多种培训策略调查了提出的方法,以提高1000小时真实世界小米智能扬声器数据的识别准确性,并带有ECHOS。实验表明,与传统方法相比,我们提出的DCUNET-MTL方法与阵列处理以及单渠道声学模型相比,相对性格错误率(CER)降低了约12.2%。它还比最近提出的神经波束成形方法获得了更高的性能。

The front-end module in multi-channel automatic speech recognition (ASR) systems mainly use microphone array techniques to produce enhanced signals in noisy conditions with reverberation and echos. Recently, neural network (NN) based front-end has shown promising improvement over the conventional signal processing methods. In this paper, we propose to adopt the architecture of deep complex Unet (DCUnet) - a powerful complex-valued Unet-structured speech enhancement model - as the front-end of the multi-channel acoustic model, and integrate them in a multi-task learning (MTL) framework along with cascaded framework for comparison. Meanwhile, we investigate the proposed methods with several training strategies to improve the recognition accuracy on the 1000-hours real-world XiaoMi smart speaker data with echos. Experiments show that our proposed DCUnet-MTL method brings about 12.2% relative character error rate (CER) reduction compared with the traditional approach with array processing plus single-channel acoustic model. It also achieves superior performance than the recently proposed neural beamforming method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源