论文标题
上门:无监督的预训练,用于使用变压器检测对象检测
UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
论文作者
论文摘要
与更快的R-CNN相比,通过变压器编码器编码器架构进行了检测变压器(DETR),可以达到竞争性能。但是,DEDR经过划痕变压器的培训,即使在可可数据集上也需要大规模的培训数据和极端的培训时间表。受到自然语言处理中预训练的变压器的巨大成功的启发,我们提出了一个新颖的借口任务,名为“随机查询贴片检测”中的无监督预训练detr(up-deTr)。具体而言,我们从给定的图像中随机进行斑块,然后将其作为查询将其馈送到解码器。预先训练该模型以从输入图像检测这些查询贴片。在预训练期间,我们解决了两个关键问题:多任务学习和多Query本地化。 (1)在借口任务中以分类和本地化偏好进行交易,我们发现冻结CNN骨干是成功训练变压器成功的前提。 (2)为了执行多传奇定位,我们使用带有注意力面罩的多传奇贴片检测来开发。此外,Up-Detr提供了一个统一的观点,用于微调对象检测和一次性检测任务。在我们的实验中,上滴可以显着提高DETR的性能,而对象检测,一声检测和全面分割,以更快的收敛性和更高的平均精度提高了DETR的性能。代码和预培训模型:https://github.com/ddddzg/up-detr。
DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr.