论文标题
盲目的高光谱图像卷积自动编码器Unbiming
Convolutional Autoencoder for Blind Hyperspectral Image Unmixing
论文作者
论文摘要
在遥感中,频谱在遥感上面是一种将混合像素分解为两个基本代表的技术:末日和丰度。在本文中,提出了一种新型的建筑,以对高光谱图像进行盲目混合。所提出的架构包括卷积层,然后是自动编码器。编码器将通过卷积层产生的特征空间转换为潜在空间表示。然后,从这些潜在特征中,解码器重建了架构输入的单色图像的推出图像。并且每个单带图像依次喂食。对实际高光谱数据的实验结果得出结论,所提出的算法在丰度估计中优于现有的未混合方法,并分别以RMSE和MAD作为指标产生竞争成果,以进行终结成员提取。
In the remote sensing context spectral unmixing is a technique to decompose a mixed pixel into two fundamental representatives: endmembers and abundances. In this paper, a novel architecture is proposed to perform blind unmixing on hyperspectral images. The proposed architecture consists of convolutional layers followed by an autoencoder. The encoder transforms the feature space produced through convolutional layers to a latent space representation. Then, from these latent characteristics the decoder reconstructs the roll-out image of the monochrome image which is at the input of the architecture; and each single-band image is fed sequentially. Experimental results on real hyperspectral data concludes that the proposed algorithm outperforms existing unmixing methods at abundance estimation and generates competitive results for endmember extraction with RMSE and SAD as the metrics, respectively.