论文标题

二次形式的脱钩不平等

Decoupling inequalities for quadratic forms

论文作者

Guo, Shaoming, Oh, Changkeun, Zhang, Ruixiang, Zorin-Kranich, Pavel

论文摘要

我们证明了$ \ ell^q l^p $ decOpling不等式的$ p,q \ in [2,\ infty)$和二次形式的任意元素。还解释了与二次形式的分离不平等现象的先前结果的联系。我们还将结果的一些应用包括在指数和限制估计中。我们主要结果的证明是基于依赖规模的Brascamp- lieb的不平等现象。

We prove sharp $\ell^q L^p$ decoupling inequalities for $p,q \in [2,\infty)$ and arbitrary tuples of quadratic forms. Connections to prior results on decoupling inequalities for quadratic forms are also explained. We also include some applications of our results to exponential sum estimates and to Fourier restriction estimates. The proof of our main result is based on scale-dependent Brascamp--Lieb inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源