论文标题
多极交换相互作用和隔离灯笼中的复杂顺序
Multipolar exchange interaction and complex order in insulating lanthanides
论文作者
论文摘要
在绝缘灯笼中,未淬灭的轨道动量和弱晶体(CF)在灯笼离子上对原子$ j $多重组的分裂导致它们之间的高度排名(多极)交换相互作用与它们之间的高度(多极)交换相互作用,并且不完全通过实验发现了复杂的低温磁性。事实证明,明确相关的{\ it i i i}方法非常有效地描述了此类材料中单个灯笼离子的CF多重组和磁性。在这里,我们扩展了此{\ it hibio}方法论,并开发了$ f $金属化合物的$ j $ -multiplets之间多极交互的第一原理显微镜理论。该方法的关键点是对Goodenough的交换机制以及传统Anderson的SupereXchange和其他贡献的完整说明,前者在许多灯笼材料中占主导地位。将此方法应用于用岩石结构的氮岛氮化岛中的地下秩序的描述揭示了其铁磁阶的多极性。我们发现,主要和辅助订单参数(分别为$ t_ {1u} $和$ e_g $对称),包含非不可忽略的$ j $ -tensorial捐款,直到第九订单。计算出的自旋波散分散体以及磁性和热力学特性表明,无法通过局限于ND位点的地面CF多倍数来定量模拟它们。我们的结果表明,对低能哈密顿量的{\ it Ab intib}方法代表了研究具有复杂磁性的材料的强大工具。
In insulating lanthanides, unquenched orbital momentum and weak crystal-field (CF) splitting of the atomic $J$ multiplet at lanthanide ions result in a highly ranked (multipolar) exchange interaction between them and a complex low-temperature magnetic order not fully uncovered by experiment. Explicitly correlated {\it ab initio } methods proved to be highly efficient for an accurate description of CF multiplets and magnetism of individual lanthanide ions in such materials. Here we extend this {\it ab initio } methodology and develop a first-principles microscopic theory of multipolar exchange interaction between $J$-multiplets in $f$ metal compounds. The key point of the approach is a complete account of Goodenough's exchange mechanism along with traditional Anderson's superexchange and other contributions, the former being dominant in many lanthanide materials. Application of this methodology to the description of the ground-state order in the neodymium nitride with rocksalt structure reveals the multipolar nature of its ferromagnetic order. We found that the primary and secondary order parameters (of $T_{1u}$ and $E_g$ symmetry, respectively) contain non-negligible $J$-tensorial contributions up to the ninth order. The calculated spin-wave dispersion and magnetic and thermodynamic properties show that they cannot be simulated quantitatively by confining to the ground CF multiplet on the Nd sites. Our results demonstrate that the {\it ab initio } approach to the low-energy Hamiltonian represents a powerful tool for the study of materials with complex magnetic order.