论文标题
一致性亚组和正交组
Congruence Subgroups and Orthogonal Groups
论文作者
论文摘要
我们在西格尔模块化组的某些一致性亚组,在任意虚构的二次数字领域中的某些一致性亚组,Hermitian模块化组与2度的Hurwitz Quaternions的模块组和模块化组之间的显式同构,以及在Hurwitz quaternions y hurwitz quaternions y hurwitz quaternions of Hurwitz quaternions of Hurwitz quaternions of 2 Quaternions of 2 Quaternions of 2 Quaternions coptimenter lingle lingle line kernels line kernels line line line line so的启用(2,n = 3,n = 3,4 = 3,4,4。适应数字理论需求。
We derive explicit isomorphisms between certain congruence subgroups of the Siegel modular group, the Hermitian modular group over an arbitrary imaginary-quadratic number field and the modular group over the Hurwitz quaternions of degree 2 and the discriminant kernels of special orthogonal groups SO 0 (2, n), n = 3, 4, 6. The proof is based on an application of linear algebra adapted to the number theoretical needs.