论文标题

固定卷积特征的酥脆边缘检测

Unmixing Convolutional Features for Crisp Edge Detection

论文作者

Huan, Linxi, Xue, Nan, Zheng, Xianwei, He, Wei, Gong, Jianya, Xia, Gui-Song

论文摘要

本文提出了一种与深边探测器一起进行的环境感知策略(CAT),以进行深边探测器,这是基于观察结果,即深边缘探测器的本地化歧义主要是由卷积神经网络的混合现象引起的:在边缘分类中的特征混合以及在融合侧面预测中进行侧面混合。猫由两个模块组成:一种新颖的追踪损失,可以通过追踪边界来进行更好的侧边缘学习来表现特征,以及通过汇总学习侧边缘的互补优点来应对侧面混合的上下文感知融合块。实验表明,所提出的猫可以集成到现代的深边缘检测器中,以提高定位精度。使用BSDS500数据集的Vanilla VGG16骨架,我们的CAT在评估不使用形态非型号抑制方案的情况下,将RCF和BDCN深边缘检测器的F量(ODS)分别提高了12%和6%。

This paper presents a context-aware tracing strategy (CATS) for crisp edge detection with deep edge detectors, based on an observation that the localization ambiguity of deep edge detectors is mainly caused by the mixing phenomenon of convolutional neural networks: feature mixing in edge classification and side mixing during fusing side predictions. The CATS consists of two modules: a novel tracing loss that performs feature unmixing by tracing boundaries for better side edge learning, and a context-aware fusion block that tackles the side mixing by aggregating the complementary merits of learned side edges. Experiments demonstrate that the proposed CATS can be integrated into modern deep edge detectors to improve localization accuracy. With the vanilla VGG16 backbone, in terms of BSDS500 dataset, our CATS improves the F-measure (ODS) of the RCF and BDCN deep edge detectors by 12% and 6% respectively when evaluating without using the morphological non-maximal suppression scheme for edge detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源