论文标题
来自三维超新星模拟的重力波信号,具有不同的中微子传输方法
Gravitational-wave Signals From Three-dimensional Supernova Simulations With Different Neutrino-Transport Methods
论文作者
论文摘要
我们使用两个不同年龄的主序列质量为9和20太阳能质量的两个不同的祖细胞比较了八个三维模拟的重力波(GW)信号。使用Aenus-Alcar代码,在两个不同的网格分辨率和两种不同的中微子传输方法下,在两个不同的网格分辨率下进行了四次模拟每个祖细胞的崩溃。这项研究的主要目的是评估最近关注的有效性,即所谓的“射线射线+”(RBR+)近似在核心崩溃模拟中是有问题的,并且可能会对理论上的GW预测产生不利影响。因此,将使用RBR+模拟的信号与使用完全多维(FMD)传输方案的相应模拟信号进行了比较。 9个太阳质量祖细胞成功爆炸,而20个太阳能模型则没有。在非探索模型的后震动层中,立即积聚的休克不稳定性和热气泡对流都会发展出来。在爆炸模型中,振动后中微子驱动的对流在核心反弹后大约100毫秒内建立,并持续到冲击复兴开始。因此,我们可以判断数值分辨率和中微子转运在通常在非旋转核心偏转模拟中所见的所有条件下的影响。我们在所有GW功能中都发现了出色的定性协议。我们发现模拟之间的较小的定量差异,但使用不同的运输方案发现模拟之间没有系统的差异。低分辨率和高分辨率模型的流体力学行为的分辨率依赖性差异对GW信号的影响比不同传输方法的后果更大。此外,增加分辨率减少了具有不同中微子转运的模型之间的差异。
We compare gravitational-wave (GW) signals from eight three-dimensional simulations of core-collapse supernovae, using two different progenitors with zero-age main sequence masses of 9 and 20 solar masses. The collapse of each progenitor was simulated four times, at two different grid resolutions and with two different neutrino transport methods, using the Aenus-Alcar code. The main goal of this study is to assess the validity of recent concerns that the so-called "Ray-by-Ray+" (RbR+) approximation is problematic in core-collapse simulations and can adversely affect theoretical GW predictions. Therefore, signals from simulations using RbR+ are compared to signals from corresponding simulations using a fully multidimensional (FMD) transport scheme. The 9 solar-mass progenitor successfully explodes, whereas the 20 solar-mass model does not. Both the standing accretion shock instability and hot-bubble convection develop in the postshock layer of the non-exploding models. In the exploding models, neutrino-driven convection in the postshock flow is established around 100 ms after core bounce and lasts until the onset of shock revival. We can, therefore, judge the impact of the numerical resolution and neutrino transport under all conditions typically seen in non-rotating core-collapse simulations. We find excellent qualitative agreement in all GW features. We find minor quantitative differences between simulations, but find no systematic differences between simulations using different transport schemes. Resolution-dependent differences in the hydrodynamic behaviour of low-resolution and high-resolution models have a greater impact on the GW signals than consequences of the different transport methods. Furthermore, increasing the resolution decreases the discrepancies between models with different neutrino transport.