论文标题
哈密顿力学中的时间对称性破坏。 iii。道格拉斯·詹姆斯·亨德森(Douglas James Henderson)的回忆录[1934-2020]
Time-Symmetry Breaking in Hamiltonian Mechanics. III. A Memoir for Douglas James Henderson [1934-2020]
论文作者
论文摘要
继Berni Alder [1]和Francis Ree [2]之后,道格拉斯·亨德森(Douglas Henderson)是比尔(Bill)1960年代的加利福尼亚同事中的第三名,即2020年死于死亡。道格(Doug)的动机,我们更加理解莱普诺夫(Lyapunov)的不稳定和在连续和原子模拟中破坏时间对称性。在这里,我们选择扩展了一对有趣的非平衡系统,稳定的冲击波和不稳定的稀有波浪的探索。我们通过模拟镜像对弹丸的碰撞来消除边界电位的需求。产生的休克和稀疏结构分别是压缩的结果和简单流体的扩展。压缩引起的冲击波具有稳定的结构,而自由扩展导致的稀疏风扇不断扩大。我们使用经典的分子动力学和欧拉流体力学在两个维度上对这些过程进行建模。尽管分子动力学是时间可逆的,但对稳态冲击波压缩的反向模拟很快导致了不稳定的稀疏风扇,违反了运动方程的显微镜时间对称性,但与宏观Navier-STOKES-Stokes-Stokes-Stokes流体机制的预测一致。这些结果的解释是两个(不可逆的)不稳定性,Lyapunov和Navier-Stokes的有趣组合。
Following Berni Alder [1] and Francis Ree [2], Douglas Henderson was the third of Bill's California coworkers from the 1960s to die in 2020. Motivated by Doug's death we undertook better to understand Lyapunov instability and the breaking of time symmetry in continuum and atomistic simulations. Here we have chosen to extend our explorations of an interesting pair of nonequilibrium systems, the steady shockwave and the unsteady rarefaction wave. We eliminate the need for boundary potentials by simulating the collisions of pairs of mirror-images projectiles. The resulting shock and rarefaction structures are respectively the results of the compression and the expansion of simple fluids. Shockwaves resulting from compression have a steady structure while the rarefaction fans resulting from free expansions continually broaden. We model these processes using classical molecular dynamics and Eulerian fluid mechanics in two dimensions. Although molecular dynamics is time-reversible the reversed simulation of a steady shockwave compression soon results in an unsteady rarefaction fan, violating the microscopic time symmetry of the motion equations but in agreement with the predictions of macroscopic Navier-Stokes fluid mechanics. The explanations for these results are an interesting combination of two (irreversible) instabilities, Lyapunov and Navier-Stokes.