论文标题

平面3D转移学习,用于端到头单峰MRI不平衡数据分割

Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation

论文作者

Kolarik, Martin, Burget, Radim, Travieso-Gonzalez, Carlos M., Kocica, Jan

论文摘要

我们提出了一种基于映射预训练的2D卷积神经网络权重的2D至3D传输学习的新方法。该方法由提出的平面3D RES-U-NET网络验证,并从2D VGG-16传输编码器,该网络适用于单级不平衡的3D图像数据分割。特别是,我们评估了MICCAI 2016 MS病变分割挑战数据集的方法,该方法利用了完全易流化的反转恢复(FLAIR)序列(FLAIR)序列,而无需大脑提取训练和推断以模拟真实的医学实践。平面3D RES-U-NET网络在处理原始MRI扫描的端到端方法中都表现出最佳的灵敏度和骰子得分,并获得了与最先进的单峰的可比骰子得分,而不是终点。完整的源代码是根据开源许可发布的,本文符合机器学习可重复性清单。通过为3D数据表示实施实践转移学习,我们可以在无选择的采样中分割不平衡的数据,并使用单个模式中的较少的培训数据实现了更可靠的结果。从医学的角度来看,单峰方法在实际实践方面具有优势,因为它不需要共同注册或检查期间的额外扫描时间。尽管现代的医学成像方法捕获了适合计算机辅助检测系统处理的高分辨率3D解剖扫描,但是在许多医学领域,自动系统解释放射学成像的解释仍然是理论上的。我们的工作旨在通过为部分研究问题提供解决方案来弥合差距。

We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16, which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated inversion recovery (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license, and this paper complies with the Machine learning reproducibility checklist. By implementing practical transfer learning for 3D data representation, we could segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in a single modality. From a medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during an examination. Although modern medical imaging methods capture high-resolution 3D anatomy scans suitable for computer-aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap by offering a solution for partial research questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源