论文标题

关于黑斯廷斯对林定理几乎通勤矩阵的方法

On Hastings' approach to Lin's Theorem for Almost Commuting Matrices

论文作者

Herrera, David

论文摘要

林的定理指出,对于所有$ε> 0 $,都有$Δ> 0 $,以便对于所有$ n \ geq 1 $,如果自偶会收缩$ a,b \ in m_n(\ m athbb {c})$ coblesy $ \ \ \ | [a,b] m_n(\ mathbb {c})$,带有$ [a',b'] = 0 $和$ \ | a-a'\ |,\ | b-b'\ |<ε$。我们介绍了ARXIV中该方法的充分解释和纠正的细节:0808.2474,这是Lin定理的第一个提供渐近估计值的版本。 我们还将此方法应用于$ b $是普通矩阵的情况,频谱位于$ \ mathbb {c} $的一些不错的一维子集中。

Lin's theorem states that for all $ε> 0$, there is a $δ> 0$ such that for all $n \geq 1$ if self-adjoint contractions $A,B \in M_n(\mathbb{C})$ satisfy $\|[A,B]\|< δ$ then there are self-adjoint contractions $A',B' \in M_n(\mathbb{C})$ with $[A',B']=0$ and $\|A-A'\|,\|B-B'\|<ε$. We present fully explained and corrected details of the approach in arXiv:0808.2474, which was the first version of Lin's theorem to provide asymptotic estimates. We also apply this method to the case where $B$ is a normal matrix with spectrum lying in some nice 1-dimensional subset of $\mathbb{C}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源