论文标题

使用签名的Infomax双曲线图解释的签名链接预测

Interpretable Signed Link Prediction with Signed Infomax Hyperbolic Graph

论文作者

Luo, Yadan, Huang, Zi, Chen, Hongxu, Yang, Yang, Baktashmotlagh, Mahsa

论文摘要

社交网络中的签名链接预测旨在揭示用户(即节点)之间的基本关系(即链接),鉴于他们观察到的现有正面和负面相互作用。大多数先前的工作都致力于使用图神经网络(GNN)学习节点嵌入,该嵌入方式通过沿着边缘发送消息来促进下游链接预测任务来保留签名的网络拓扑。然而,现有的基于图的方法几乎不能为以下三个问题提供人类无能的解释:(1)哪些邻居要汇总,(2)沿着传播的途径以及(3)在学习过程中遵循哪些社会理论。为了回答上述问题,在本文中,我们研究了如何调和\ textit {ballack {ballace}和\ textit {status {status}的社会规则,并使用信息理论进行了社会规则,并开发了一个统一的框架,称为签名的infomax yromax hyprobolic图(\ textbf {sihg {sihg})。通过最大化边缘极性和节点嵌入之间的相互信息,可以识别支持边缘符号推断的最具代表性的相邻节点。与现有的GNN不同,只能在子空间中分组朋友的特征,而拟议的SIHG则包含了签名的注意模块,该模块也能够将敌对用户彼此远离推动以保持对抗的几何形状。而学习的边缘注意图的极性又提供了对每个聚合中使用的社会理论的解释。为了建模高阶用户关系和复杂的层次结构,节点嵌入在具有较低失真的双曲空间中投影和测量。在四个签名的网络基准上进行的广泛实验表明,所提出的SIHG框架在签名的链接预测中的最先进框架明显优于最先进的框架。

Signed link prediction in social networks aims to reveal the underlying relationships (i.e. links) among users (i.e. nodes) given their existing positive and negative interactions observed. Most of the prior efforts are devoted to learning node embeddings with graph neural networks (GNNs), which preserve the signed network topology by message-passing along edges to facilitate the downstream link prediction task. Nevertheless, the existing graph-based approaches could hardly provide human-intelligible explanations for the following three questions: (1) which neighbors to aggregate, (2) which path to propagate along, and (3) which social theory to follow in the learning process. To answer the aforementioned questions, in this paper, we investigate how to reconcile the \textit{balance} and \textit{status} social rules with information theory and develop a unified framework, termed as Signed Infomax Hyperbolic Graph (\textbf{SIHG}). By maximizing the mutual information between edge polarities and node embeddings, one can identify the most representative neighboring nodes that support the inference of edge sign. Different from existing GNNs that could only group features of friends in the subspace, the proposed SIHG incorporates the signed attention module, which is also capable of pushing hostile users far away from each other to preserve the geometry of antagonism. The polarity of the learned edge attention maps, in turn, provide interpretations of the social theories used in each aggregation. In order to model high-order user relations and complex hierarchies, the node embeddings are projected and measured in a hyperbolic space with a lower distortion. Extensive experiments on four signed network benchmarks demonstrate that the proposed SIHG framework significantly outperforms the state-of-the-arts in signed link prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源