论文标题

监督学习在MOBA游戏中取得了人级的表现:国王荣誉的案例研究

Supervised Learning Achieves Human-Level Performance in MOBA Games: A Case Study of Honor of Kings

论文作者

Ye, Deheng, Chen, Guibin, Zhao, Peilin, Qiu, Fuhao, Yuan, Bo, Zhang, Wen, Chen, Sheng, Sun, Mingfei, Li, Xiaoqian, Li, Siqin, Liang, Jing, Lian, Zhenjie, Shi, Bei, Wang, Liang, Shi, Tengfei, Fu, Qiang, Yang, Wei, Huang, Lanxiao

论文摘要

我们提出了Juewu-SL,这是第一个基于监督的学习人工智能(AI)计划,该计划在玩多人在线战场(MOBA)游戏中实现了人级的性能。与先前的尝试不同,我们以监督和端到端的方式整合了宏观策略和MOBA游戏播放的微观管理。在目前最受欢迎的MOBA Kings荣誉荣誉测试中,我们的AI在标准5V5场比赛中在高级国王球员的水平上表现出色。

We present JueWu-SL, the first supervised-learning-based artificial intelligence (AI) program that achieves human-level performance in playing multiplayer online battle arena (MOBA) games. Unlike prior attempts, we integrate the macro-strategy and the micromanagement of MOBA-game-playing into neural networks in a supervised and end-to-end manner. Tested on Honor of Kings, the most popular MOBA at present, our AI performs competitively at the level of High King players in standard 5v5 games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源