论文标题

廉价的核心:异质多重集中游戏的稳定性

Being Central on the Cheap: Stability in Heterogeneous Multiagent Centrality Games

论文作者

Istrate, Gabriel, Bonchiş, Cosmin

论文摘要

我们研究战略网络形成游戏,其中代理商试图形成(昂贵)的链接以最大程度地提高其网络中心性。我们的模型源自杰克逊和沃林斯基的对称连接模型,但通过多种古典中心和游戏理论的中心度来代替衰减中心(杰克逊·沃林斯基模型中隐含),可以通过代替衰减中心(杰克逊·沃林斯基模型中的隐含)来实现代理实用程序的异质性。我们主要有兴趣表征渐近的成对稳定网络,即那些成对稳定的网络,适用于所有足够小的正优势成本。我们发现了丰富的稳定类型: - 我们提供了一种公理的网络中心方法,使我们能够预测稳定的网络,以相连的集中度实用程序功能组合,从而产生稳定的网络,具有让人联想到“核心外围”和“丰富的俱乐部”网络等结构属性的特征。 - 我们表明,模型上的一个简单变化使其通用,即每个网络可能都是稳定的网络。 - 我们还表明,通常可以从稳定网络的结构中推断出有关代理实用程序的大量数量。

We study strategic network formation games in which agents attempt to form (costly) links in order to maximize their network centrality. Our model derives from Jackson and Wolinsky's symmetric connection model, but allows for heterogeneity in agent utilities by replacing decay centrality (implicit in the Jackson-Wolinsky model) by a variety of classical centrality and game-theoretic measures of centrality. We are primarily interested in characterizing the asymptotically pairwise stable networks, i.e. those networks that are pairwise stable for all sufficiently small, positive edge costs. We uncover a rich typology of stability: - we give an axiomatic approach to network centrality that allows us to predict the stable network for a rich set of combination of centrality utility functions, yielding stable networks with features reminiscent of structural properties such as "core periphery" and "rich club" networks. - We show that a simple variation on the model renders it universal, i.e. every network may be a stable network. - We also show that often we can infer a significant amount about agent utilities from the structure of stable networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源